Giải bài 9.45 trang 63 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

a) ΔABCΔHACCA2=CH.CB

b) AHBC=HEAB

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức trường hợp đồng dạng của tam giác vuông để chứng minh hai tam giác đồng dạng: Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Lời giải chi tiết

Tam giác ABC vuông tại A nên ^BAC=900

Vì AH là đường cao trong tam giác ABC nên AHBC.

Do đó, ^AHB=^AHC=900

Tam giác ABC và tam giác HAC có: ^BAC=^AHC=900,ˆC chung

Do đó, ΔABCΔHAC(gg)

Suy ra: ACHC=BCAC nên CA2=CH.CB

b) Vì HE vuông góc với AB (E thuộc AB) nên ^AEH=900

Tam giác AHE và tam giác CBA có:

^AEH=^BAC=900,^HAE=ˆC (cùng phụ với góc CAH)

Do đó, ΔAHEΔCBA(gg). Suy ra AHBC=HEAB

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close