Nội dung từ Loigiaihay.Com
Cho hàm số $y = \dfrac{{2{x^2} - 3{x} + m}}{{x - m}}$ . Để đồ thị hàm số không có tiệm cận đứng thì các giá trị của tham số $m$ là:
$m = 0$
$m = 0;m = 1$
$m = 1$
Không tồn tại $m$
Đồ thị hàm số $y = \dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ không có tiệm cận đứng nếu mọi nghiệm của $g\left( x \right)$ (nếu có) đều là nghiệm của $f\left( x \right)$.
Cách 1: Thử đáp án
Với $m = 0$ ta có $x = 0$ là nghiệm của đa thức $2{x^2} - 3{\text{x}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 3\left( {x \ne 0} \right)$ không có tiệm cận đứng.
Với $m = 1$ ta có $x = 1$ là nghiệm của đa thức $2{x^2} - 3{\text{x + 1}}$ trên tử
$ \Rightarrow y = 2{\text{x}} - 1\left( {x \ne 1} \right)$ không có tiệm cận đứng.
Cách 2: Chia đa thức
Để hàm số không có tiệm cận đứng thì tử số phải chia hết cho mẫu số
$ \Leftrightarrow 2{m^2} - 2m = 0 \Leftrightarrow m = 0$ hoặc $m = 1$
Đáp án : B
Các bài tập cùng chuyên đề
Nếu $\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty $ thì đường thẳng $x = {x_0}$ là:
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Đường thẳng $y = {y_0}$ là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ nếu:
Cho hàm số \(y = \dfrac{{x - 2}}{{x + 2}}\) có đồ thị \((C)\). Tìm tọa độ giao điểm \(I\) của hai đường tiệm cận của đồ thị \((C)\)
Đồ thị hàm số \(y = \dfrac{{ax + b}}{{2x + c}}\) có tiệm cận ngang \(y = 2\) và tiệm cận đứng \(x = 1\) thì \(a + c\) bằng
Cho hàm số \(y = \dfrac{{2018}}{{x - 2}}\) có đồ thị \(\left( H \right).\) Số đường tiệm cận của \(\left( H \right)\) là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Đồ thị hàm số nào sau đây có 3 đường tiệm cận?
Số tiệm cận ngang của đồ thị hàm số \(y = 2x - 1 + \sqrt {4{x^2} - 4} \) là
Tất cả phương trình tiệm cận ngang của đồ thị hàm số $y = \dfrac{{\sqrt {{x^2} + x + 1} }}{{2x + 3}}$ là:
Đồ thị hàm số $y = \dfrac{x}{{\sqrt {{x^2} - 1} }}$ có bao nhiêu đường tiệm cận ngang:
Phương trình đường tiệm cận đứng của đồ thị hàm số $y = \dfrac{{{x^2} - 3x - 4}}{{{x^2} - 16}}$ là:
Đồ thị hàm số $y = \dfrac{{x - 3}}{{{x^2} + x - 2}}$ có bao nhiêu đường tiệm cận đứng?
Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:
Cho hàm số $y = \dfrac{{3x}}{{1 + 2x}}$. Khẳng định nào sau đây là khẳng định đúng?
Giao điểm của hai đường tiệm cận của đồ thị hàm số nào dưới đây nằm trên đường thẳng $d:y = x$?
Phương trình đường tiệm cận xiên của đồ thị hàm số $y = \dfrac{{{x^2} - 3x - 1}}{{x + 1}}$ là:
Đồ thị hàm số \(y = \sqrt {4{x^2} + 4x + 3} - \sqrt {4{x^2} + 1} \) có bao nhiêu đường tiệm cận ngang?
Cho hàm số $y = \dfrac{{2mx + m}}{{x - 1}}\left( C \right).$. Với giá trị nào của $m \left({m\ne0}\right)$ thì đường tiệm cận đứng, đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng $8$?
Cho hàm số $y = \dfrac{{x - 2}}{{{x^2} - 2x + m}}\left( C \right).$ Tất cả các giá trị của m để (C) có 3 đường tiệm cận là: