Giải mục 1 trang 46 SGK Toán 11 tập 2 - Cùng khám pháXét hàm số \(y = 3{x^4} - 2{x^2} + x\)
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 1 Xét hàm số \(y = 3{x^4} - 2{x^2} + x\) a) Tính \(y'\) b) Tính đạo hàm của \(y'\) Phương pháp giải: a) Áp dụng công thức \({\left( {{x^n}} \right)^,} = n.{x^{n - 1}}\) b) Áp dụng công thức \({\left( {{x^n}} \right)^,} = n.{x^{n - 1}}\), \({C^'} = 0\) Lời giải chi tiết: a) \(y' = \left( {3{x^4} - 2{x^2} + x} \right) = 3.4{x^3} - 2.2x + 1 = 12{x^3} - 4x + 1\) b) Đạo hàm của \(y'\) là \(\left( {12{x^3} - 4x + 1} \right)' = 12.3{x^2} - 4.1 + 0 = 36{x^2} - 4\) Luyện tập 1 Tính đạo hàm cấp hai của các hàm số sau: a) \(y = 1 - 3\cos 3x\) b) \(y = {e^{3{x^2} + x}}\) Phương pháp giải: +) Tính \(y'\) +) Sau đó tính đạo hàm của \(y'\) ta thu được \(y''\) +) Áp dụng công thức \(\left( {\cos u} \right)' = - u'.\sin u;\,\,\,\left( {\sin u} \right)' = u'.\cos u\); \(\left( {{e^u}} \right)' = u'.{e^u}\) +) \(\left( {u.v} \right)' = u'.v + v'.u\) Lời giải chi tiết: a) \(y' = \left( {1 - 3\cos 3x} \right)' = 3.\sin 3x.\left( {3x} \right)' = 9\sin 3x\) \(y'' = \left( {9\sin 3x} \right)' = 9.\cos 3x.\left( {3x} \right)' = 27\cos 3x\) b) \(y' = \left( {{e^{3{x^2} + x}}} \right)' = \left( {3{x^2} + x} \right)'.{e^{3{x^2} + x}} = \left( {6x + 1} \right).{e^{3{x^2} + x}}\) \(y'' = \left( {6x + 1} \right)'.{e^{3{x^2} + x}} + \left( {6x + 1} \right).\left( {{e^{3{x^2} + x}}} \right)' = 6.{e^{3{x^2} + x}} + {\left( {6x + 1} \right)^2}.{e^{3{x^2} + x}}\) \( = \left( {36{x^2} + 12x + 7} \right).{e^{3{x^2} + x}}\)
|