Giải bài tập 8.10 trang 65 SGK Toán 9 tập 2 - Kết nối tri thức

Gieo đồng thời hai con xúc xắc cân đối và đồng chất I và II. Tính xác suất của các biến cố sau: G: “Không có con xúc xắc xuất hiện mặt 6 chấm”; H: “Số chấm xuất hiện trên con xúc xắc I là số lẻ và số chấm xuất hiện trên con xúc xắc II lớn hơn 4”; K: “Số chấm xuất hiện trên cả hai con xúc xắc lớn hơn 2”.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Gieo đồng thời hai con xúc xắc cân đối và đồng chất I và II. Tính xác suất của các biến cố sau:

G: “Không có con xúc xắc xuất hiện mặt 6 chấm”;

H: “Số chấm xuất hiện trên con xúc xắc I là số lẻ và số chấm xuất hiện trên con xúc xắc II lớn hơn 4”;

K: “Số chấm xuất hiện trên cả hai con xúc xắc lớn hơn 2”.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cách tính xác suất của một biến cố E:

Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \).

Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng.

Bước 3. Mô tả kết quả thuận lợi của biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E.

Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \).

Lời giải chi tiết

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là số chấm xuất hiện trên hai con xúc xắc I và II.

Ta có bảng miêu tả không gian mẫu là:

Do đó, số phần tử của không gian mẫu \(\Omega \) là 36.

Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy ra là đồng khả năng.

Có 25 kết quả thuận lợi của biến cố G là: (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5).

Do đó, \(P\left( G \right) = \frac{{25}}{{36}}\).

Có 6 kết quả thuận lợi của biến cố H là: (1, 5), (1, 6), (3, 5), (3, 6), (5, 5), (5, 6) nên \(P\left( H \right) = \frac{6}{{36}} = \frac{1}{6}\).

Có 16 kết quả thuận lợi của biến cố K là: (3, 3), (4, 3), (5, 3), (6, 3), (3, 4), (4, 4), (5, 4), (6, 4), (3, 5), (4, 5), (5, 5), (6, 5), (3, 6), (4, 6), (5, 6), (6, 6). Do đó, \(P\left( K \right) = \frac{{16}}{{36}} = \frac{4}{9}\).

  • Giải bài tập 8.11 trang 65 SGK Toán 9 tập 2 - Kết nối tri thức

    Trên một dãy phố có ba quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán ăn để ăn trưa. a) Mô tả không gian mẫu của phép thử. b) Tính xác suất của các biến cố sau: E: “Hai bạn cùng vào một quán”; F: “Cả hai bạn không chọn quán C”; G: “Có ít nhất một bạn chọn quán B”.

  • Giải bài tập 8.9 trang 65 SGK Toán 9 tập 2 - Kết nối tri thức

    Có hai túi đựng các tấm thẻ. Túi I đựng 4 tấm thẻ ghi các chữ cái TT, TH, HT và HH. Túi II đựng 2 tấm thẻ ghi các chữ cái T và H. Từ mỗi túi rút ngẫu nhiên ra một tấm thẻ rồi ghép hai thẻ lại với nhau để được ba chữ cái, trong đó thẻ hai chữ cái đặt trước, chẳng hạn tấm thẻ TT ghép với tấm thẻ H được ba chữ cái TTH. Tính xác suất của các biến cố sau: a) E: “Trong ba chữ cái, có hai chữ H và một chữ T”; b) F: “Trong ba chữ cái, có nhiều nhất hai chữ T”.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close