Giải bài tập 5.27 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

Tính góc giữa các cặp mặt phẳng a) \(\alpha :3x + 4y + 5z - 1 = 0\) và \(\beta :2x + y + z - 3 = 0\) b) \(\alpha :x - y + 2z - 1 = 0\) và \(\beta :x + 2y - z + 3 = 0\) c) \(\alpha :x + 3y - 2z - 1 = 0\) và \(\beta :4x + 2y + 5z - 3 = 0\)

Đề bài

Tính góc giữa các cặp mặt phẳng

a) \(\alpha :3x + 4y + 5z - 1 = 0\)  và \(\beta :2x + y + z - 3 = 0\)

b) \(\alpha :x - y + 2z - 1 = 0\) và \(\beta :x + 2y - z + 3 = 0\)

c) \(\alpha :x + 3y - 2z - 1 = 0\) và \(\beta :4x + 2y + 5z - 3 = 0\)

Phương pháp giải - Xem chi tiết

Trong không gian Oxyz, cho hai mặt phẳng \((\alpha )\) và \((\beta )\) lần lượt có các vectơ pháp tuyến là \(\vec n = (A;B;C)\) và \(\vec n' = (A';B';C')\). Khi đó:

\(\cos \left( {(\alpha ),(\beta )} \right) = \left| {\frac{{\vec n \cdot \vec n'}}{{\left| {\vec n} \right| \cdot \left| {\vec n'} \right|}}} \right| = \frac{{|AA' + BB' + CC'|}}{{\sqrt {{A^2} + {B^2} + {C^2}}  \cdot \sqrt {{{A'}^2} + {{B'}^2} + {{C'}^2}} }}\)

Lời giải chi tiết

a)

- Vector pháp tuyến của \(\alpha \): \(\overrightarrow {{n_1}}  = (3;4;5)\)

- Vector pháp tuyến của \(\beta \): \(\overrightarrow {{n_2}}  = (2;1;1)\)

\(\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}}  = 3 \times 2 + 4 \times 1 + 5 \times 1 = 15\)

\(|\overrightarrow {{n_1}} | = \sqrt {{3^2} + {4^2} + {5^2}}  = \sqrt {50} ,\quad |\overrightarrow {{n_2}} | = \sqrt {{2^2} + {1^2} + {1^2}}  = \sqrt 6 \)

\(\cos \theta  = \frac{{15}}{{\sqrt {50}  \times \sqrt 6 }} = \frac{{15}}{{\sqrt {300} }} = \frac{{15}}{{10\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\quad  \Rightarrow \quad \theta  = {30^\circ }\)

b)

- Vector pháp tuyến của \(\alpha \): \(\overrightarrow {{n_1}}  = (1; - 1;2)\)

- Vector pháp tuyến của \(\beta \): \(\overrightarrow {{n_2}}  = (1;2; - 1)\)

\(\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}}  = 1 \times 1 + ( - 1) \times 2 + 2 \times ( - 1) =  - 3\)

\(|\overrightarrow {{n_1}} | = \sqrt {{1^2} + {{( - 1)}^2} + {2^2}}  = \sqrt 6 ,\quad |\overrightarrow {{n_2}} | = \sqrt {{1^2} + {2^2} + {{( - 1)}^2}}  = \sqrt 6 \)

\(\cos \theta  = \frac{3}{{\sqrt 6  \times \sqrt 6 }} = \frac{1}{2} \Rightarrow \theta  \approx 60^\circ \)

c)

- Vector pháp tuyến của \(\alpha \): \(\overrightarrow {{n_1}}  = (1;3; - 2)\)

- Vector pháp tuyến của \(\beta \): \(\overrightarrow {{n_2}}  = (4;2;5)\)

\(\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}}  = 1 \times 4 + 3 \times 2 + ( - 2) \times 5 = 0\)

Vì \(\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}}  = 0\) nên hai vectơ pháp tuyến vuông góc với nhau, hay hai mặt phẳng vuông góc với nhau.

  • Giải bài tập 5.28 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Cho tứ diện OABC có \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\), (\(a > 0,b > 0,c > 0\)). Gọi \(\alpha ,\beta ,\gamma \) lần lượt là các góc giữa các mặt phẳng \((OAB)\), \((OBC)\), \((OAC)\) với mặt phẳng \((ABC)\). Chứng minh rằng: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1.\)

  • Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

  • Giải bài tập 5.30 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Trong hệ trục tọa độ Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí \(A(0;10;0)\) với vận tốc \(\vec v = (150;150;40)\). a) Viết công thức tính tọa độ của máy bay trong 2 giờ đầu tiên. b) Tính góc nâng của máy bay (góc giữa hướng chuyển động bay lên của máy bay với đường bằng) và làm tròn kết quả đến hàng đơn vị.

  • Giải bài tập 5.26 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa đường thẳng d và mặt phẳng \(\alpha \) a) \(d:\frac{x}{1} = \frac{y}{2} = \frac{z}{2}\quad {\rm{và }}\quad \alpha :2x + 2y + 1 = 0\) b) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 7t}\\{y = - 1 - 8t}\\{z = 1 - 15t}\end{array}} \right.,\quad (t \in \mathbb{R})\) và \(\alpha :2x + 2y + 1 = 0\) c) \(d:\frac{x}{3} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2},\quad \alpha :6x - 2y + 4z = 0\)

  • Giải bài tập 5.25 trang 70 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa các cặp đường thẳng sau: a) (d:left{ {begin{array}{*{20}{l}}{x = 1 + 2t}{y = - 1 + t,,,,,,,,,,t in mathbb{R}}{z = 3 + 4t}end{array}} right.quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 2 - t'}{y = - 1 + 3t',,,,,t', in mathbb{R}}{z = 4 + 2t'}end{array}} right.) b) (d:frac{x}{1} = frac{y}{2} = frac{{z - 2}}{2}quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 3 + t'}{y = - 1 + t',,,,,t', in mathb

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close