Giải bài tập 5 trang 27 SGK Toán 12 tập 1 - Cánh diềuSố lượng sản phẩm bán được cho một công ty trong x (tháng) được tính theo công thức \(S\left( x \right) = 200\left( {5 - \frac{9}{{2 + x}}} \right)\) trong đó \(x \ge 1\). a) Xem \(y = S\left( x \right)\) là một hàm số xác định trên nửa khoảng \([1; + \infty )\), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về số lượng sản phẩm bán được của công ty đó trong x (tháng) khi x đủ lớn. Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Hoá - Sinh - Sử - Địa Đề bài Số lượng sản phẩm bán được cho một công ty trong x (tháng) được tính theo công thức \(S\left( x \right) = 200\left( {5 - \frac{9}{{2 + x}}} \right)\) trong đó \(x \ge 1\). a) Xem \(y = S\left( x \right)\) là một hàm số xác định trên nửa khoảng \([1; + \infty )\), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về số lượng sản phẩm bán được của công ty đó trong x (tháng) khi x đủ lớn. Phương pháp giải - Xem chi tiết a) Đường thẳng \(y = {y_o}\) được gọi là đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_o}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_o}\). b) Dựa vào câu a) để kết luận Lời giải chi tiết a) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } S\left( x \right) = 1000\) Vậy đường thẳng \(y = 1000\) là đường tiệm cận ngang của đồ thị hàm số \(S\left( x \right)\) b) Khi x đủ lớn thì số lượng sản phẩm bán được của công ti đó trong tháng x sẽ gần đạt được 1000 sản phẩm
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|