Giải bài tập 3.21 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường. (Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137) a) Viết biểu thức tính v theo l và Fr từ công thức trên. b) Ước tính tốc độ di chuyể

Đề bài

Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường.

(Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137)

a) Viết biểu thức tính v theo l và Fr từ công thức trên.

b) Ước tính tốc độ di chuyển của loài khủng long Triceratops có chiều dài chân là 2,8m và có số Froude là 0,16 (làm tròn kết quả đến hàng phần mười).

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức căn bậc hai của một biểu thức để tìm v: Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A.

b) + Thay \(l = 2,8,Fr = 0,16,g = 9,8\) vào biểu thức tính vận tốc vừa làm ở phần a.

+ Sử dụng kiến thức căn thức bậc hai của một bình phương để tính: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

Lời giải chi tiết

a) Vì \(Fr = \frac{{{v^2}}}{{gl}}\) nên \({v^2} = Fr.g.l\).

Do đó, \(v = \sqrt {Fr.g.l} \).

b) Với \(l = 2,8,Fr = 0,16,g = 9,8\) ta có:

\(v = \sqrt {0,16.9,8.2,8}  = \sqrt {\frac{{2744}}{{625}}}  = \sqrt {\frac{{{{14}^3}}}{{{{25}^2}}}}  = \frac{{14\sqrt {14} }}{{25}} \approx 2,1\left( {m/s} \right)\)

  • Lý thuyết Căn thức bậc hai Toán 9 Cùng khám phá

    1. Căn thức bậc hai Khái niệm căn thức bậc hai Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A, còn A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.

  • Giải bài tập 3.20 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Vào ngày 06/01/2020, ông Thành đầu tư hết 100 triệu đồng vào một tài khoản đầu tư chứng khoán. Đến cuối ngày 06/01/2021, tài khoản đầu tư của ông tăng gấp k lần. Đến cuối ngày 06/01/2022, tài khoản đó tăng thêm 0,8k lần so với tài khoản cuối ngày 06/01/2021. Gọi S (triệu đồng) là số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022. a) Viết biểu thức tính S theo k. b) Viết biểu thức tính k theo S. Nếu số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022 là 180 triệu đ

  • Giải bài tập 3.19 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Diện tích A của hình tròn bán kính r được tính bởi công thức \(A = \pi {r^2}\). a) Viết biểu thức tính r theo A từ công thức trên. b) Diện tích của hình tròn \({C_1}\) gấp 9 lần diện tích của hình tròn \({C_2}\) thì bán kính của hình tròn \({C_1}\) gấp bao nhiêu lần bán kính của hình tròn \({C_2}\)?

  • Giải bài tập 3.18 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Sắp xếp các số sau theo thứ tự tăng dần: a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \); b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).

  • Giải bài tập 3.17 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }}\); b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}}\); c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\); d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }}\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close