Giải bài tập 3.17 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }}\); b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}}\); c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\); d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }}\).

Đề bài

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa):

a) \(\frac{{6\sqrt 2  + 3}}{{1 + 2\sqrt 2 }}\);

b) \(\frac{{\sqrt {15}  - \sqrt 5 }}{{\sqrt 3  - 1}}\);

c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\);

d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x  + \sqrt y }}\).

Phương pháp giải - Xem chi tiết

a) Phân tích tử số của phần thức thành \(3\left( {1 + 2\sqrt 2 } \right)\), từ đó rút gọn biểu thức.

b) Phân tích tử số của phần thức thành \(\sqrt 5 \left( {\sqrt 3  - 1} \right)\), từ đó rút gọn biểu thức.

c) Phân tích tử số của phần thức thành \(\sqrt m \left( {\sqrt m  - 2} \right)\), từ đó rút gọn biểu thức.

d) Phân tích tử số của phần thức thành \(\sqrt x \left( {3\sqrt x  + \sqrt y } \right)\), từ đó rút gọn biểu thức.

Lời giải chi tiết

a) \(\frac{{6\sqrt 2  + 3}}{{1 + 2\sqrt 2 }} = \frac{{3\left( {1 + 2\sqrt 2 } \right)}}{{1 + 2\sqrt 2 }} = 3\);

b) \(\frac{{\sqrt {15}  - \sqrt 5 }}{{\sqrt 3  - 1}} = \frac{{\sqrt 5 .\sqrt 3  - \sqrt 5 }}{{\sqrt 3  - 1}} = \frac{{\sqrt 5 \left( {\sqrt 3  - 1} \right)}}{{\sqrt 3  - 1}} = \sqrt 5 \);

c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }} = \frac{{\sqrt m \left( {\sqrt m  - 2} \right)}}{{ - \left( {\sqrt m  - 2} \right)}} =  - \sqrt m \);

d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x  + \sqrt y }} = \frac{{\sqrt x \left( {3\sqrt x  + \sqrt y } \right)}}{{3\sqrt x  + \sqrt y }} = \sqrt x \).

  • Giải bài tập 3.18 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Sắp xếp các số sau theo thứ tự tăng dần: a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \); b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).

  • Giải bài tập 3.19 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Diện tích A của hình tròn bán kính r được tính bởi công thức \(A = \pi {r^2}\). a) Viết biểu thức tính r theo A từ công thức trên. b) Diện tích của hình tròn \({C_1}\) gấp 9 lần diện tích của hình tròn \({C_2}\) thì bán kính của hình tròn \({C_1}\) gấp bao nhiêu lần bán kính của hình tròn \({C_2}\)?

  • Giải bài tập 3.20 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Vào ngày 06/01/2020, ông Thành đầu tư hết 100 triệu đồng vào một tài khoản đầu tư chứng khoán. Đến cuối ngày 06/01/2021, tài khoản đầu tư của ông tăng gấp k lần. Đến cuối ngày 06/01/2022, tài khoản đó tăng thêm 0,8k lần so với tài khoản cuối ngày 06/01/2021. Gọi S (triệu đồng) là số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022. a) Viết biểu thức tính S theo k. b) Viết biểu thức tính k theo S. Nếu số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022 là 180 triệu đ

  • Giải bài tập 3.21 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

    Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường. (Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137) a) Viết biểu thức tính v theo l và Fr từ công thức trên. b) Ước tính tốc độ di chuyể

  • Lý thuyết Căn thức bậc hai Toán 9 Cùng khám phá

    1. Căn thức bậc hai Khái niệm căn thức bậc hai Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A, còn A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close