Giải bài tập 1.32 trang 42 SGK Toán 12 tập 1 - Kết nối tri thứcHàm số nào dưới đây không có cực trị? A. (y = left| x right|). B. (y = {x^4}). C. (y = - {x^3} + x). D. (y = frac{{2x - 1}}{{x + 1}}). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Hàm số nào dưới đây không có cực trị? Phương pháp giải - Xem chi tiết Sử dụng kiến thức về định lí cực trị hàm số để tìm hàm không có cực trị: Giả sử hàm số \(y = f\left( x \right)\) liên tục trên khoảng (a; b) chứa điểm \({x_0}\) và có đạo hàm trên các khoảng \(\left( {a;{x_0}} \right)\) và \(\left( {{x_0};b} \right)\). Khi đó: + Nếu \(f'\left( x \right) < 0\) với mọi \(x \in \left( {a;{x_0}} \right)\) và \(f'\left( x \right) > 0\) với mọi \(x \in \left( {{x_0};b} \right)\) thì điểm \({x_0}\) là một điểm cực tiểu của hàm số f(x). + Nếu \(f'\left( x \right) > 0\) với mọi \(x \in \left( {a;{x_0}} \right)\) và \(f'\left( x \right) < 0\) với mọi \(x \in \left( {{x_0};b} \right)\) thì điểm \({x_0}\) là một điểm cực đại của hàm số f(x). Lời giải chi tiết Hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) có \(y' = \frac{3}{{{{(x + 1)}^2}}} > 0\) với mọi \(x \ne - 1\) nên hàm số không có cực trị. Đáp án D
|