Giải bài 8 trang 18 sách bài tập toán 12 - Chân trời sáng tạoTừ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng (x) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm (x) để thể tích của hình hộp là lớn nhất. Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - Địa Đề bài Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng x (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm x để thể tích của hình hộp là lớn nhất. Phương pháp giải - Xem chi tiết Sử dụng công thức tính thể tích hình hộp chữ nhật để tính thể tích V(x), sau đó tìm giá trị lớn nhất của hàm số V(x). Lời giải chi tiết Theo đề bài ta có: Cạnh của hộp là: 12−2x(cm). Chiều cao của hộp là: x(cm). Thể tích của hộp là: V(x)=x(12−2x)2=4x3−48x2+144x(cm3). Vì cạnh của hộp không âm nên 12−2x≥0⇔x≤6 Xét hàm số V(x)=4x3−48x2+144x trên đoạn [0;6]. Ta có: V′(x)=12x2−96x+144 V′(x)=0⇔x=6 hoặc x=2. V(0)=0;V(2)=128;V(6)=0 Vậy max[0;6]V(x)=V(2)=128. Vậy với x=2(cm) thì thể tích của hình hộp là lớn nhất.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|