Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạoCho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó. Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - Địa Đề bài Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó. Phương pháp giải - Xem chi tiết Sử dụng công thức tính diện tích hình thang để tính diện tích S(x), sau đó tìm giá trị lớn nhất của hàm số S(x). Lời giải chi tiết Xét hình thang cân ABCD có đáy nhỏ AB, gọi H,K lần lượt là chân đường cao kẻ từ A và B xuống CD. Ta có: CD=5+2x,AH=√AD2−DH2=√52−x2=√25−x2 Diện tích hình thang là: S=12(AB+CD).AH=12(5+5+2x).√25−x2=(5+x).√25−x2 Do DH<AD nên x<5. Xét hàm số S(x)=(5+x).√25−x2 trên nửa khoảng [0;5). Ta có: S′(x)=(5+x)′.√25−x2+(5+x).(√25−x2)′=√25−x2+(5+x).−x√25−x2=−2x2−5x+25√25−x2 S′(x)=0⇔x=52 hoặc x=−5 (loại) Bảng biến thiên của hàm số trên nửa khoảng [0;5): Từ bảng biến thiên, ta thấy max[0;5)S(x)=S(52)=75√34. Vậy hình thang cân ABCD có diện tích lớn nhất bằng 75√34.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|