Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác cân tại S có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy.

a) Tính góc α giữa hai đường thẳng SDBC;

b) Tính góc β giữa hai mặt phẳng (SAD)(SCD).

Phương pháp giải - Xem chi tiết

Gắn vào hệ trục toạ độ và sử dụng công thức góc giữa hai đường thẳng và góc giữa hai mặt phẳng.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi O là trung điểm của AB, I là trung điểm của CD.

SAB là tam giác cân tại S nên SOAB, suy ra SO(ABCD).

Chọn hệ trục Oxyz như hình vẽ. Ta có:

S(0;0;6),A(2;0;0),B(2;0;0),C(2;4;0),D(2;4;0).

a) Ta có SD=(2;4;6),BC=(0;4;0), suy ra

cos(SD,BC)=|cos(SD,BC)|=|2.0+4.4+(6).0|22+42+(6)2.02+42+02=147

Vậy (SD,BC)57,7.

b) Ta có: SD=(2;4;6),SA=(2;0;6)[SD,SA]=(24;0;8)=8(3;0;1).

Do đó (SAD) có vectơ pháp tuyến n=(3;0;1).

SD=(2;4;6),CD=(4;0;0)[SD,CD]=(0;24;16)=8(0;3;2).

Do đó (SCD) có vectơ pháp tuyến n=(0;3;2).

cos((SAD),(SCD))=|cos(n,n)|=|3.0+0.3+1.2|32+02+12.02+32+22=2130130

Vậy ((SAD),(SCD))79,9.

  • Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

    Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian Oxyz với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi O là gốc cột, A là điểm buộc dây cáp vào cột ăng-ten và M,N là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là O(0;0;0),A(0;0;6),M(3;4;3),N(5;2;2). a) Tính độ dài các đoạn dây cáp MANA. b) Tính

  • Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

    Tính góc (alpha ) trong mỗi trường hợp sau: a) (alpha ) là góc giữa hai vectơ (overrightarrow a = left( {1;1; - 1} right)) và (overrightarrow b = left( {5;2;7} right)); b) (alpha ) là góc giữa hai đường thẳng (d:left{ begin{array}{l}x = 1 + t\y = 2 - sqrt 3 t\z = 5end{array} right.) và (d':left{ begin{array}{l}x = 1 - sqrt 3 t'\y = 7 + t'\z = 9end{array} right.). c) (alpha ) là góc giữa hai mặt phẳng (left( P right):4x + 2y - z + 9 = 0) và (

  • Giải bài 4 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Xác định vị trí tương đối của hai đường thẳng (d) và (d') trong mỗi trường hợp sau: a) (d:left{ begin{array}{l}x = t\y = 1 + 3t\z = 1 - tend{array} right.) và (d':left{ begin{array}{l}x = 2 + 2t'\y = 7 + 6t'\z = - 1 - 2t'end{array} right.); b) (d:frac{{x - 2}}{2} = frac{y}{3} = frac{z}{1}) và (d':frac{x}{4} = frac{y}{6} = frac{z}{2}); c) (d:left{ begin{array}{l}x = 1 + t\y = 1 + t\z = 2 - tend{array} right.) và (d':frac{{x - 2}}{2} = frac{{y - 2}}{

  • Giải bài 3 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Lập phương trình chính tắc của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Mleft( {9;0;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {5; - 11;4} right)); b) (d) đi qua hai điểm (Aleft( {6;0; - 1} right),Bleft( {8;3;2} right)); c) (d) có phương trình tham số (left{ begin{array}{l}x = 2t\y = - 1 + 7t\z = 3 - 6tend{array} right.).

  • Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

    Lập phương trình tham số của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Aleft( {1; - 5;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {2;0;7} right)); b) (d) đi qua hai điểm (Mleft( {3; - 1; - 1} right),Nleft( {5;1;2} right)).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close