Giải bài 5.27 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1Cho tam giác ABC có (AB < AC) và đường cao AH (H.5.12). a) Trong các điểm B, H và C, điểm nào nằm trong, điểm nào nằm trên và điểm nào nằm ngoài đường tròn (A; AB)? Vì sao? b) Xác định ví trị của điểm D trên đoạn AC trong mỗi trường hợp sau: • Đường tròn (A) và đường tròn (C; CD) tiếp xúc với nhau; • Đường tròn (A) và đường tròn (C; CD) cắt nhau; • Đường tròn (A) và đường tròn (C; CD) không giao nhau. Tổng hợp Đề thi vào 10 có đáp án và lời giải Toán - Văn - Anh Đề bài Cho tam giác ABC có AB<AC và đường cao AH (H.5.12). a) Trong các điểm B, H và C, điểm nào nằm trong, điểm nào nằm trên và điểm nào nằm ngoài đường tròn (A; AB)? Vì sao? b) Xác định ví trị của điểm D trên đoạn AC trong mỗi trường hợp sau: - Đường tròn (A) và đường tròn (C; CD) tiếp xúc với nhau; - Đường tròn (A) và đường tròn (C; CD) cắt nhau; - Đường tròn (A) và đường tròn (C; CD) không giao nhau. Phương pháp giải - Xem chi tiết a) + Điểm B nằm trên đường tròn (A; AB). + Chứng minh AH<AB. Do đó, điểm H nằm trong đường tròn (A; AB). + Vì AB<AC nên điểm C nằm ngoài đường tròn (A; AB). b) Hai đường tròn (O; R) và (O’; r) (với R>r). Khi đó: + Hai đường tròn ở ngoài nhau khi OO′>R+r. + Hai đường tròn tiếp xúc ngoài khi OO′=R+r. + Hai đường tròn cắt nhau khi R−r<OO′<R+r. + Hai đường tròn tiếp xúc trong khi OO′=R−r. + Đường tròn (O) đựng (O’) khi OO′<R−r. Lời giải chi tiết a) Điểm B nằm trên đường tròn (A; AB). Vì AB<AC nên điểm C nằm ngoài đường tròn (A; AB). Tam giác AHB vuông tại H nên AH<AB. Do đó, điểm H nằm trong đường tròn (A; AB). b) Do điểm C nằm ngoài đường tròn (A; AB) nên AH cắt đường tròn đó tại một điểm nằm giữa A và C; gọi điểm đó là điểm M. - Đường tròn (A) và đường tròn (C; CD) tiếp xúc với nhau khi D trùng với M. - Đường tròn (A) và đường tròn (C; CD) cắt nhau khi D nằm giữa A và M. - Đường tròn (A) và đường tròn (C; CD) không giao nhau khi D nằm giữa C và M.
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
|