Giải bài 5 trang 23 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Cho hàm số (fleft( x right) = 3{rm{x}} - 1). Biết rằng ({rm{a}}) là số thoả mãn (intlimits_0^1 {{f^2}left( x right)dx} = a{left[ {intlimits_0^1 {fleft( x right)dx} } right]^2}). Giá trị của ({rm{a}}) là A. 2. B. (frac{1}{4}). C. 4. D. (frac{1}{2}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Chọn đáp án đúng.

Cho hàm số \(f\left( x \right) = 3{\rm{x}} - 1\). Biết rằng \({\rm{a}}\) là số thoả mãn \(\int\limits_0^1 {{f^2}\left( x \right)dx}  = a{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]^2}\). Giá trị của \({\rm{a}}\) là

A. 2.

B. \(\frac{1}{4}\).

C. 4.

D. \(\frac{1}{2}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức: \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).

Lời giải chi tiết

\(\begin{array}{l}\int\limits_0^1 {{f^2}\left( x \right)dx}  = \int\limits_0^1 {{{\left( {3{\rm{x}} - 1} \right)}^2}dx}  = \int\limits_0^1 {\left( {9{{\rm{x}}^2} - 6{\rm{x}} + 1} \right)dx}  = \left. {\left( {\frac{{9{{\rm{x}}^2}}}{2} - 3{{\rm{x}}^2} + x} \right)} \right|_0^1 = 1\\{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]^2} = {\left[ {\int\limits_0^1 {\left( {3{\rm{x}} - 1} \right)dx} } \right]^2} = {\left[ {\left. {\left( {\frac{{3{{\rm{x}}^2}}}{2} - x} \right)} \right|_0^1} \right]^2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\\\int\limits_0^1 {{f^2}\left( x \right)dx}  = a{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]^2} \Leftrightarrow 1 = a.\frac{1}{4} \Leftrightarrow a = 4\end{array}\)

Chọn C.

  • Giải bài 6 trang 23 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đáp án đúng. Đồ thị của hàm số \(y = f\left( x \right)\) đi qua điểm \(\left( {1;1} \right)\) và có hệ số góc của tiếp tuyến tại các điểm \(\left( {x;f\left( x \right)} \right)\) là \(1 - 4x\). Giá trị của \(f\left( 3 \right)\) là A. ‒12. B. ‒13. C. ‒15. D. ‒30.

  • Giải bài 7 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đáp án đúng. Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {1;3} \right]\) và thoả mãn \(\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;f\left( 1 \right) = - 2\). Giá trị \(f\left( 3 \right)\) là A. 9. B. 11. C. ‒13. D. 19.

  • Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\).

  • Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r

  • Giải bài 10 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (y = fleft( x right)) là hàm số bậc hai có đồ thị như Hình 1. Gọi (S) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số (y = fleft( x right)) và trục hoành. a) (fleft( x right) = 4 - 2{x^2}). b) (S = intlimits_{ - 2}^2 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 2}^2 {fleft( x right)dx} ). d) (S = frac{{16}}{3}).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close