Giải bài 7 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Cho hàm số f(x) liên tục trên đoạn [1;3] và thoả mãn 31[3x22f(x)]dx=4;f(1)=2. Giá trị f(3) là A. 9. B. 11. C. ‒13. D. 19.

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Chọn đáp án đúng.

Cho hàm số f(x) liên tục trên đoạn [1;3] và thoả mãn

31[3x22f(x)]dx=4;f(1)=2.

Giá trị f(3)

A. 9.

B. 11.

C. ‒13.

D. 19.

Phương pháp giải - Xem chi tiết

‒ Sử dụng định nghĩa tích phân.

‒ Sử dụng công thức: xαdx=xα+1α+1+C.

Lời giải chi tiết

Ta có: 313x2dx=x3|31=26

31[3x22f(x)]dx=313x2dx231f(x)dx.

Do đó: 4=26231f(x)dx31f(x)dx=11.

Mặt khác 31f(x)dx=f(3)f(1).

Do đó f(3)=31f(x)dx+f(1)=11+(2)=9.

Chọn A.

  • Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số y=ex2, trục hoành và hai đường thẳng x=0,x=ln4 là A. 1. B. 3. C. 2ln21. D. 34ln2.

  • Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r

  • Giải bài 10 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (y = fleft( x right)) là hàm số bậc hai có đồ thị như Hình 1. Gọi (S) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số (y = fleft( x right)) và trục hoành. a) (fleft( x right) = 4 - 2{x^2}). b) (S = intlimits_{ - 2}^2 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 2}^2 {fleft( x right)dx} ). d) (S = frac{{16}}{3}).

  • Giải bài 1 trang 25 sách bài tập toán 12 - Chân trời sáng tạo

    Tiếp tuyến của đồ thị hàm số (y = fleft( x right)) tại điểm (left( {x;fleft( x right)} right)) có hệ số góc là (3{x^2} - 6x + 2). Tìm hàm số (y = fleft( x right)), biết đồ thị của nó đi qua điểm (left( { - 1;1} right)).

  • Giải bài 2 trang 25 sách bài tập toán 12 - Chân trời sáng tạo

    Tìm: a) (int {{{left( {3{rm{x}} - frac{1}{{{x^2}}}} right)}^2}dx} ); b) (int {left( {7{rm{x}}sqrt[3]{x} - frac{1}{{sqrt {{x^3}} }}} right)dx} left( {x > 0} right)); c) (int {{{left( {{3^{2{rm{x}}}} - 1} right)}^2}dx} ); d) (int {left( {2 - 3{{cos }^2}frac{x}{2}} right)dx} ).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close