Giải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạoLập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau: a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\); b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\). c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\lef Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau: a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\); b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\). c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\left( {2;4;2} \right)\); d) \(\left( P \right)\) cắt ba trục toạ độ lần lượt tại các điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\). Phương pháp giải - Xem chi tiết ‒ Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vectơ pháp tuyến: Phương trình mặt phẳng đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\) hay \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\). ‒ Lập phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \): Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right]\). Bước 2: Lập phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \). ‒ Lập phương trình tổng quát của mặt phẳng đi qua ba điểm không thẳng hàng \(A,B,C\): Bước 1: Tìm cặp vectơ chỉ phương, chẳng hạn \(\overrightarrow {AB} ,\overrightarrow {AC} \). Bước 2: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\). Bước 3: Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và có vectơ pháp tuyến \(\overrightarrow n \). ‒ Phương trình mặt phẳng theo đoạn chắn: Phương trình mặt phẳng đi qua ba điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với \(a,b,c \ne 0\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Lời giải chi tiết a) Phương trình mặt phẳng \(\left( P \right)\) là: \(3\left( {x - 1} \right) + \left( {y - 2} \right) - 2\left( {z - 3} \right) = 0 \Leftrightarrow 3{\rm{x}} + y - 2z + 1 = 0\). b) Ta có: \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {1.4 - 1.0;1.3 - 1.4;1.0 - 1.3} \right) = \left( {4; - 1; - 3} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Phương trình mặt phẳng \(\left( P \right)\) là: \(4\left( {x + 2} \right) - \left( {y - 3} \right) - 3\left( {z - 0} \right) = 0 \Leftrightarrow 4x - y - 3z + 11 = 0\). c) Ta có: \(\overrightarrow {AB} = \left( {4;1;0} \right),\overrightarrow {AC} = \left( {1;2;0} \right)\). Khi đó, \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.0 - 0.2;0.1 - 4.0;4.2 - 1.1} \right) = \left( {0;0;7} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\). Phương trình mặt phẳng \(\left( P \right)\) là: \(0\left( {x - 1} \right) + 0\left( {y - 2} \right) + 7\left( {z - 2} \right) = 0 \Leftrightarrow 7\left( {z - 2} \right) = 0 \Leftrightarrow z - 2 = 0\). d) Phương trình mặt phẳng đi qua ba điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\) là: \(\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} = 6 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} - 6 = 0\).
|