Giải bài 1.21 trang 14 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Tìm tích của hai đa thức:

Đề bài

Tìm tích của hai đa thức:

a) \(2{x^4} - {x^3}y + 6x{y^3} + 2{y^4}\) và \({x^4} + 3{x^3}y - {y^4}\);

b) \({x^3}y + 0,4{x^2}{y^2} - x{y^3}\) và \(5{x^2} - 2,5xy + 5{y^2}\).

Phương pháp giải - Xem chi tiết

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết

a) Ta có

\(\left( {2{x^4} - {x^3}y + 6x{y^3} + 2{y^4}} \right)\left( {{x^4} + 3{x^3}y - {y^4}} \right)\)

\(= 2{x^4}\left( {{x^4} + 3{x^3}y - {y^4}} \right) - {x^3}y\left( {{x^4} + 3{x^3}y - {y^4}} \right) + 6x{y^3}\left( {{x^4} + 3{x^3}y - {y^4}} \right) + 2{y^4}\left( {{x^4} + 3{x^3}y - {y^4}} \right)\)

\( = 2{x^8} + 6{x^7}y - 2{x^4}{y^4} - {x^7}y - 3{x^6}{y^2} + {x^3}{y^5} + 6{x^5}{y^3} + 18{x^4}{y^4} - 6x{y^7} + 2{x^4}{y^4} + 6{x^3}{y^5} - 2{y^8}\)

\(= 2{x^8} + \left( {6{x^7}y - {x^7}y} \right) + \left( { - 2{x^4}{y^4} + 18{x^4}{y^4} + 2{x^4}{y^4}} \right) - 3{x^6}{y^2} + \left( {{x^3}{y^5} + 6{x^3}{y^5}} \right) + 6{x^5}{y^3} - 6x{y^7} - 2{y^8}\)

\( = 2{x^8} + 5{x^7}y + 18{x^4}{y^4} - 3{x^6}{y^2} + 7{x^3}{y^5} + 6{x^5}{y^3} - 6x{y^7} - 2{y^8}\).

b) Ta có

\(\left( {{x^3}y + 0,4{x^2}{y^2} - x{y^3}} \right).\left( {5{x^2} - 2,5xy + 5{y^2}} \right)\)

\( = {x^3}y\left( {5{x^2} - 2,5xy + 5{y^2}} \right) + 0,4{x^2}{y^2}\left( {5{x^2} - 2,5xy + 5{y^2}} \right) - x{y^3}\left( {5{x^2} - 2,5xy + 5{y^2}} \right)\)

\( = 5{x^5}y - 2,5{x^4}{y^2} + 5{x^3}{y^3} + 2{x^4}{y^2} - {x^3}{y^3} + 2{x^2}{y^4} - 5{x^3}{y^3} + 2,5{x^2}{y^4} - 5x{y^5}\)

\( = 5{x^5}y + \left( { - 2,5{x^4}{y^2} + 2{x^4}{y^2}} \right) + \left( {5{x^3}{y^3} - {x^3}{y^3} - 5{x^3}{y^3}} \right) + \left( 2{x^2}{y^4} + 2,5{x^2}{y^4}\right) - 5x{y^5}\)

\( = 5{x^5}y - 0,5{x^4}{y^2} - {x^3}{y^3} + 4,5{x^2}{y^4} - 5x{y^5}\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close