Lý thuyết Tần số tương đối Toán 9 Cùng khám phá

1. Tần số tương đối và bảng tần số tương đối, biểu đồ tần số tương đối ở dạng biểu đồ cột hoặc biểu đồ quạt tròn Tần số tương đối Bảng tần số tương đối ở dạng bảng ngang

1. Tần số tương đối và bảng tần số tương đối, biểu đồ tần số tương đối ở dạng biểu đồ cột hoặc biểu đồ quạt tròn

Tần số tương đối

 

Bảng tần số tương đối ở dạng bảng ngang

Giả sử dấu hiệu điều tra có các giá trị \({x_1},{x_2},...,{x_k}\) (k là một số nguyên dương) và tần số tương ứng của chúng trong mẫu dữ liệu là \({n_1},{n_2},...,{n_k}\).

Tần số tương đối của giá trị \({x_i}\left( {i = 1,2,...,k} \right)\), kí hiệu \({f_i}\), là số được tính theo công thức

\({f_i} = \frac{{{n_i}}}{N}\)

Trong đó \(N = {n_1} + {n_2} + ... + {n_k}\) là tổng các tần số (tức là kích thước mẫu)

Bảng tần số tương đối là bảng gồm hai dòng (cột), trong đó dòng (cột) thứ nhất ghi các giá trị của dấu hiệu điều tra, dòng (cột) thứ hai ghi tần số tương đối ứng với mỗi giá trị.

Tần số tương đối thường được viết ở dạng % để không phải quy đồng mẫu mỗi khi so sánh chúng và để thuận tiện cho việc đưa ra dự đoán về một vấn đề, một hiện tượng nào đó liên quan đến mẫu dữ liệu. Khi đó công thức tính tần số tương đối được viết là:

\({f_i} = \frac{{{n_i}}}{N}.100\% \)

Ví dụ: Cho bảng thống kê số anh, chị, em ruột của các bạn trong lớp:

Tổng số bạn là \(n = 30\).

Số anh, chị, em ruột là \({x_1} = 0;{x_2} = 1;{x_3} = 2;{x_4} = 3\) tương ứng với \({m_1} = 8;{m_2} = 12;{m_3} = 6,{m_4} = 4\).

Do đó các tần số tương đối cho các giá trị \({x_1},{x_2},{x_3},{x_4}\) lần lượt là:

\({f_1} = \frac{8}{{30}} \approx 26,7\% ;{f_2} = \frac{{12}}{{30}} = 40\% ;{f_3} = \frac{6}{{30}} = 20\% ;{f_4} = \frac{4}{{30}} \approx 13,3\% \).

Ta có bảng tần số tương đối sau:

Lưu ý:

- Trong một mẫu dữ liệu, tổng các tần số tương đối luôn bằng 1 nếu chúng được viết ở dạng thương của \({n_i}\) và \(N\), và luôn luôn bằng 100% nếu chúng được viết ở dạng phần trăm.

- Bảng có cả dòng (cột) tần số và dòng (cột) tần số tương đối được gọi là bảng tần số - tần số tương đối.

Nhận xét: Ý nghĩa của tần số tương đối

- Tần số tương đối giúp ta hiểu rõ tỉ lệ xuất hiện nhiều hay ít của mỗi giá trị trong mẫu dữ liệu. Nếu như tần số chỉ cho phép so sánh phân bố của dữ liệu trong cùng một mẫu hay trong hai mẫu, có kích thước bằng nhau thì tần số tương đối là công cụ để so sánh phân bố của dữ liệu trong những mẫu không cùng kích thước.

- Trong thực tiễn, nếu mẫu dữ liệu đại diện được cho tổng thể thì có thể sử dụng tần số tương đối của mẫu để đưa ra một kết luận hay một quyết định cho tổng thể. Điều này không thể làm được nếu chỉ dựa vào tần số.

2. Biểu đồ tần số tương đối

Bảng tần số tương đối có thể được biểu thị bởi biểu đồ cột và biểu đồ hình quạt tròn.

Các biểu đồ này được gọi là biểu đồ tần số tương đối (dạng cột và dạng hình quạt tròn).

Vẽ biểu đồ tần số ở dạng biểu đồ cột

Để vẽ biểu đồ tần số tương đối ở dạng biểu đồ cột của một mẫu dữ liệu thống kê, ta có thể thực hiện các bước sau:

Bước 1. Lập bảng tần số tương đối của mẫu số liệu thống kê đó

Bước 2. Vẽ biểu đồ cột biểu diễn số liệu thống kê trong bảng tần số tương đối nhận được ở Bước 1.

Vẽ biểu đồ tần số ở dạng biểu đồ hình quạt tròn

Vì đường tròn là cung \(360^\circ \) nên hình quạt tròn biểu diễn 1% tương ứng với cung có số đo \(\frac{{360^\circ }}{{100}} = 3,6^\circ \). Suy ra hình quạt tròn biểu diễn f% ứng với \(f.3,6^\circ \).

Để vẽ biểu đồ tần số tương đối ở dạng biểu đồ hình quạt tròn, ta vẽ một hình tròn rồi chia nó thành các hình quạt biểu diễn các tần số tương đối. Hình quạt tròn biểu diễn tần số tương đối \({f_i} = {a_i}\% \) ứng với cung có số đo \({a_i}.3,6^\circ \).

Lưu ý:

- Vì \({f_i} = \frac{{{n_i}}}{N}.100\% \) nên khi có bảng tần số thì ta có thể xác định hình quạt biểu diễn tần số tương đối \({f_i}\) qua cung có số đo \(\frac{{{n_i}}}{N}.360^\circ \).

- Để xác định cung khi biết số đo của nó, ta dựa vào tính chất sau: Trong đường tròn, số đo cung nhỏ $\overset\frown{AmB}$ bằng số đo của góc ở tâm chắn cung đó, số đo cung lớn $\overset\frown{AnB}$ bằng hiệu giữa \(360^\circ \) và số đo cung $\overset\frown{AmB}$.

Ví dụ: Cho bảng tần số tương đối về loại phim yêu thích của các học sinh trong lớp 9A như sau:

Biểu đồ tần số tương đối ở dạng biểu đồ cột của mẫu số liệu thống kê đó là:

Biểu đồ tần số tương đối ở dạng biểu đồ hình quạt tròn của mẫu số liệu thống kê đó là:

  • Giải mục 1 trang 105, 106, 107 SGK Toán 9 tập 2 - Cùng khám phá

    Dưới đây là hai bảng thống kê kết quả kiểm tra cân nặng của cá nuôi ở hai ao với hai điều kiện chăm sóc A, B: Cá được xem là đảm bảo chất lượng nếu đạt khối lượng không dưới 700 g. Vậy cá nuôi ở diều kiện A hay B cho kết quả tốt hơn? Để trả lời câu hỏi này, bạn Nam phân tích: Đối chiếu hai bảng thì thấy: • Loại 700 g: nuôi ở điều kiện A đạt 30 con, nuôi ở điều kiện B đạt ít hơn (25 con); • Loại 800 g: nuôi ở điều kiện A đạt 80 con, nuôi ở điều kiện B đạt ít hơn (75 con); • Loại 900 g: nu

  • Giải mục 2 trang 109, 110, 111 SGK Toán 9 tập 2 - Cùng khám phá

    Xét bảng tần số tương đối đã lập ở Ví dụ 1 về tuổi của các thành viên trong lớp hội hoạ (Bảng 10.13b). Hai biểu đồ sau biểu diễn dữ liệu cho trong bảng đó: Sử dụng các biểu đồ đã cho để trả lời hai câu hỏi dưới đây. Đối với mỗi câu hỏi hãy cho biết em đã chọn biểu đồ nào và giải thích sự lựa chọn đó. a) Nhóm học sinh ở độ tuổi nào chiếm số đông nhất trong lớp? Tần số tương đối ứng với nhóm đó gấp bao nhiêu lần tần số tương đối của nhóm có ít học sinh nhất? b) Nhóm nào có số học sinh chiếm

  • Giải bài tập 10.9 trang 112 SGK Toán 9 tập 2 - Cùng khám phá

    a) Hoàn thiện bảng tần số - tần số tương đối dưới đây về chiều cao của 120 cây thông. b) Vẽ biểu đồ tần số tương đối dạng hình cột và dạng hình quạt tròn biểu diễn dữ liệu trong bảng lập ở câu a.

  • Giải bài tập 10.10 trang 112 SGK Toán 9 tập 2 - Cùng khám phá

    Bạn Hùng điều tra thời gian tự học ở nhà của một số học sinh lớp 9 và trình kết quả trong bảng thống kê sau: a) Lập bảng tần số tương đối ứng với bảng số liệu đã cho. b) Vẽ biểu đồ tần số tương đối dạng hình cột và dạng hình quạt tròn để biểu diễn bảng lập được ở câu a. c) Sử dụng hai biểu đồ đã vẽ để trả lời các câu hỏi dưới đây. Đối với mỗi câu hỏi, hãy cho biết em đã dùng biểu đồ nào để tìm câu trả lời. Giải thích vì sao. Đông nhất là nhóm học sinh tự học mỗi ngày bao nhiêu phút? Bao

  • Giải bài tập 10.11 trang 112 SGK Toán 9 tập 2 - Cùng khám phá

    Kiểm tra khối lượng một số hộp sữa chua được lấy ngẫu nhiên từ thành phẩm của máy đóng hộp X, nhà máy chế biến sữa thu được ở bảng sau: a) Lập bảng tần số tương đối và vẽ biểu đồ tần số tương đối dạng hình quạt tròn biểu diễn dữ liệu đã cho. b) Những hộp cân nặng từ 95 g đến 105 g được xem là đạt yêu cầu về khối lượng. Vậy trong 80 hộp sữa chua được kiểm tra có bao nhiêu phần trăm hộp đạt yêu cầu? c) Máy đóng hộp được xem là vận hành tốt nếu trên 90% sản phẩm của nó đạt yêu cầu. Nếu 80 hộp

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close