Lý thuyết Phép quay Toán 9 Cùng khám pháKhái niệm phép quay Phép quay thuận chiều (alpha ^circ ) (0° < (alpha ^circ ) < 360°) tâm O giữ nguyên điểm O, biến điểm A khác điểm O thành điểm A’ thuộc đường tròn (O; OA) sao cho tia OA quay thuận chiều kim đồng hồ đến tia OB thì điểm A tạo nên cung AmA’ có số đo (alpha ^circ ) (hình a). Khái niệm phép quay
Phép quay biến hình P thành P’
Phép quay giữ nguyên đa giác đều
Lưu ý: Người ta chứng minh được rằng mỗi đa giác đều có thể nội tiếp một đường tròn. Cho đa giác đều P có n cạnh (\(n \in \mathbb{R},n \ge 3\)) nội tiếp đường tròn (O), phép quay \(\frac{{k360^\circ }}{n}\) tâm O với \(k \in \left\{ {0;1;...;n} \right\}\) giữ nguyên đa giác đều P. Ví dụ: Ta có AB = BC = CD = DE = EG = GH = HK = KA nên số đo các cung nhỏ AB, BC, CD, DE, EG, GH, HK, KA đều bằng \(\frac{{360^\circ }}{8} = 45^\circ \). Các phép quay thuận chiều (hoặc ngược chiều) \(45^\circ ,90^\circ ,135^\circ ,180^\circ ,225^\circ ,270^\circ ,315^\circ \) tâm O giữ nguyên bát giác ABCDEGHK.
|