Lý thuyết Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá

Phương sai và độ lệch chuẩn

Phương sai và độ lệch chuẩn

- Phương sai của mẫu số liệu ghép nhóm, kí hiệu là s2 , là một số được tính theo công thức sau:

\({s^2} = \frac{{m{{({x_1} - \overline x )}^2} + ... + {m_k}{{({x_k} - \overline x )}^2}}}{n}\)

trong đó, \(n = {m_1} + ... + {m_k}\); \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) với I = 1,2,…,k là giá trị đại diện cho nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\) và \(\overline x  = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.

- Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \).

Ý nghĩa

- Phương sai (độ lệch chuẩn) của mẫu số liệu ghép nhóm là các xấp xỉ cho phương sai, độ lệch chuẩn của mẫu số liệu gốc. Chúng được dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm xung quanh số trung bình của mẫu số liệu đó.

- Khi hai mẫu số liệu ghép nhóm có cùng đơn vị và có số trung bình bằng nhau (hoặc xấp xỉ nhau), mẫu số liệu nào có độ lệch chuẩn nhỏ hơn thì mức độ phân tán (so với số trung bình) của các số liệu trong mẫu đó sẽ thấp hơn.

Nhận xét

- Độ lệch chuẩn có cùng đơn vị với mẫu số liệu.

- Khác với khoảng biến thiên và khoảng tứ phân vị, phương sai (độ lệch chuẩn) đã xem xét tất cả các giá trị của mẫu số liệu nên có thể mang lại một nhận định đầy đủ hơn về mức độ phân tán của mẫu số liệu quanh số trung bình.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close