Lý thuyết Góc ở tâm, góc nội tiếp Toán 9 Chân trời sáng tạo

1. Góc ở tâm Định nghĩa Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.

1. Góc ở tâm

Định nghĩa

Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.

2. Cung, số đo cung

Cung

Mỗi phần đường tròn giới hạn bởi hai điểm A, B trên đường tròn gọi là một cung AB, kí hiệu là $\overset\frown{AB}$.

Ví dụ:

Góc ở tâm \(\widehat {AOB}\) chắn cung AnB hay cung AnB bị chắn bởi góc ở tâm \(\widehat {AOB}\).

$\overset\frown{AnB}$ là cung nhỏ và $\overset\frown{AmB}$ là cung lớn.

Số đo cung

- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

- Số đo của cung lớn bằng: \({360^0}\) - số đo cung nhỏ có chung đầu mút với cung lớn.

- Số đo của cung nửa đường tròn bằng \({180^0}\).

- Số đo của cung AB được kí hiệu là sđ$\overset\frown{AB}$.

Chú ý:

- Cung nhỏ có số đo nhỏ hơn \({180^0}\), cung lớn có số đo lớn hơn \({180^0}\). Cung nửa đường tròn có số đo \({180^0}\).

- Khi hai mút của cung trùng nhau, ta có cung không với số đo \({0^0}\) và cung cả đường tròn có số đo \({360^0}\).

- Một cung có số đo \({n^0}\) thường được gọi tắt là cung \({n^0}\).

- Trong một đường tròn, hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau.

3. Góc nội tiếp

Định nghĩa

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong của góc được gọi là cung bị chắn.

Số đo góc nội tiếp

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

Ví dụ:

\(\widehat {AMB}\) là góc nội tiếp chắn $\overset\frown{AB}$ trên đường tròn (O) nên \(\widehat {AMB} = \frac{1}{2}\)sđ$\overset\frown{AB}$.

Chú ý: Trong một đường tròn:

- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

- Góc nội tiếp nhỏ hơn hoặc bằng \({90^o}\) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

Góc nội tiếp chắn nửa đường tròn là góc vuông.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close