Giải mục 5 trang 53, 54 Chuyên đề học tập Toán 10 - Cánh diều

Cho hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\).

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 7

Cho hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\).

Xét đường thẳng \({\Delta _1}:x =  - \frac{a}{e}\) với mỗi điểm \(M\left( {{x_0};{y_0}} \right) \in \left( H \right)\) (Hình 17), tính:

 

a) Khoảng cách \(d\left( {M,{\Delta _1}} \right)\) từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \({\Delta _1}\)

b) Tỉ số \(\frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}}\)

Lời giải chi tiết:

a) Viết lại phương trình đưởng thẳng \({\Delta _1}\) ở dạng: \(x + 0y + \frac{a}{e} = 0\)

Với mỗi điểm \(M\left( {{x_0};{y_0}} \right) \in \left( H \right)\), ta có: \(d\left( {M,{\Delta _1}} \right) = \frac{{\left| {x + 0y + \frac{a}{e}} \right|}}{{\sqrt {{1^2} + {0^2}} }} = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e}\)

b) Ta có: \(M{F_1} = \left| {a + ex} \right| \Rightarrow \frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}} = \frac{{\left| {a + ex} \right|}}{{\frac{{\left| {a + ex} \right|}}{e}}} = e\)

Vậy \(\frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}} = e\)

Luyện tập - vận dụng 4

Viết phương trình chình tắc của đườn hypebol biết một tiêu điểm là \({F_2}(\sqrt 2 ;0)\) và đường chuẩn ứng với tiêu điểm đó là: \(x = \frac{1}{{\sqrt 2 }}\).

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)

Lời giải chi tiết:

Gọi phương trình chính tắc của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (\(a > 0,b > 0\)).

+ Tiêu điểm \({F_2}(c;0) = (\sqrt 2 ;0) \Rightarrow c = \sqrt 2 \)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x = \frac{a}{e}\) hay \(\frac{a}{e} = \frac{1}{{\sqrt 2 }}\)

Mà \(e = \frac{c}{a} \Rightarrow \frac{a}{e} = \frac{{{a^2}}}{c} = \frac{{{a^2}}}{{\sqrt 2 }} \Rightarrow {a^2} = 1 \Rightarrow a = 1.\) Suy ra \(b = \sqrt {{c^2} - {a^2}}  = 1\)

Vậy PTCT của hypebol là \({x^2} - {y^2} = 1\)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close