-
Bài 2 trang 37
Tính: a) \(S = C_{2022}^0{9^{2022}} + C_{2022}^1{9^{2021}} + ... + C_{2022}^k{9^{2022 - k}} + ... + C_{2022}^{2021}9 + C_{2022}^{2022}\)
Xem chi tiết -
Bài 3 trang 37
Chứng minh \(C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\)
Xem chi tiết -
Bài 8 trang 38
Chứng minh công thức nhị thức Newton bằng phương pháp quy nạp: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\) với \(n \in \mathbb{N}*\)
Xem chi tiết