-
Câu hỏi mục 1 trang 60
Quan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó.
Xem chi tiết -
Bài 1 trang 66
Cho hình chữ nhật ABCD với bốn đỉnh \(A\left( { - 4;3} \right),B\left( {4;3} \right),C\left( {4; - 3} \right),D\left( { - 4; - 3} \right).\)
Xem chi tiết -
Bài 2 trang 67
Các đường conic có phương trình như sau là đường elip hay hypebol? Tìm độ dài các trục, tọa độ tiêu điểm, tiêu cự, tâm sai của các đường conic đó.
Xem chi tiết -
Bài 3 trang 67
Cho parabol có phương trình chính tắc \({y^2} = 2x\). Tìm tiêu điểm, phương trình đường chuẩn của parabol và vẽ parabol đó.
Xem chi tiết -
Bài 4 trang 67
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x = - 5\) và điểm \(F\left( { - 4;0} \right)\). Lấy 3 điểm \(A\left( { - 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)
Xem chi tiết -
Bài 5 trang 67
Vệ tinh nhân tạo lần đầu tiên được Liên Xô (cũ) phóng từ Trái Đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Người ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1.342 dặm (1 dặm xấp xỉ 1.609 km). Tìm tâm sai của quỹ đạo đó, biết bán kinh của Trái Đất xấp xỉ 4.000 dặm
Xem chi tiết -
Bài 6 trang 67
Sao Diêm Vương chuyển động xung quanh Mặt Trời theo quỹ đạo là một đường elip có một trong hai tiêu điểm là tâm của Mặt Trời. Biết elip này có bán trục lớn \(a \approx 5,{906.10^6}\left( {km} \right)\) và tâm sai \(e \approx 0,249\) (Nguồn: https://vi.wikimedia.org)
Xem chi tiết -
Bài 7 trang 67
Cho đường thẳng \(\Delta \) và điểm O sao cho khoảng cách từ O đến \(\Delta \) là OH = 1 (Hình 39). Với mỗi điểm M di động trong mặt phẳng, gọi K là hình chiếu vuông góc của M lên \(\Delta \). Chứng minh tập hợp các điểm M trong mặt phẳng sao cho \(M{K^2} - M{O^2} = 1\) là một đường parabol.
Xem chi tiết