Giải bài 3 trang 56 Chuyên đề học tập Toán 10 – Cánh diềuTrong mặt phẳng tọa độ Oxy, cho hypebol có phương trình chính tắc là \({x^2} - {y^2} = 1\). Chứng minh rằng hai đường tiệm cận của hypebol vuông góc với nhau. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Trong mặt phẳng tọa độ Oxy, cho hypebol có phương trình chính tắc là \({x^2} - {y^2} = 1\). Chứng minh rằng hai đường tiệm cận của hypebol vuông góc với nhau. Phương pháp giải - Xem chi tiết Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có: + Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{b}{a}x,y = \frac{b}{a}x\) Lời giải chi tiết Ta có \(a = 1,b = 1\) nên ta có phương trình hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - x,y = x\). Hai đường thẳng này có hệ số góc lần lượt là \({k_1} = - 1;{k_2} = 1\) Ta thấy \({k_1}.{k_2} = - 1\) nên hai đường thẳng này vuông góc với nhau
|