Giải mục 2 trang 50, 51 Chuyên đề học tập Toán 10 - Cánh diềua) Quan sát điểm \(M\left( {x;y} \right)\) thuộc hypebol (H) (Hình 15) và chứng tỏ rằng \(x \le - a\) hoặc \(x \ge a\) Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 3 a) Quan sát điểm \(M\left( {x;y} \right)\) thuộc hypebol (H) (Hình 15) và chứng tỏ rằng \(x \le - a\) hoặc \(x \ge a\)
b) Viết phương trình hai đường thẳng PR và QS Phương pháp giải: Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có: + Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S - \left( {a;b} \right).\) + Hai đường thẳng PR và QS lần lượt có phương trình \(y = - \frac{b}{a}x,y = \frac{b}{a}x\) được gọi là hai đường tiệm cận của hypebol (H) Lời giải chi tiết: a) Nếu điểm \(M\left( {x;y} \right)\) thuộc hypebol (H) thì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) Vì \(\frac{{{y^2}}}{{{b^2}}} \ge 0 \Rightarrow \frac{{{x^2}}}{{{a^2}}} \ge \frac{{{y^2}}}{{{b^2}}} + 1 \Rightarrow {x^2} \ge {a^2} \ge \left[ \begin{array}{l}x \ge a\\x \le - a\end{array} \right.\) b) Ta có: \(P\left( { - a;b} \right),R\left( {a; - b} \right) \Rightarrow \overrightarrow {PR} = \left( {2a; - 2b} \right)\) Chọn \(\left( {b;a} \right)\) là 1 vector pháp tuyến của PR, khi đó phương trình đường thẳng PR là: \(PR:b\left( {x + a} \right) + a\left( {y - b} \right) = 0 \Leftrightarrow bx + ay = 0\) hay \(PR:y = - \frac{b}{a}x\) Ta có: \(Q\left( {a;b} \right),S - \left( {a;b} \right) \Rightarrow \overrightarrow {QS} = \left( { - 2a; - 2b} \right)\) Chọn \(\left( {b; - a} \right)\) là 1 vector pháp tuyến của QS, khi đó phương trình đường thẳng QS là: \(QS:b\left( {x - a} \right) - a\left( {y - b} \right) = 0 \Leftrightarrow bx - ay = 0\) hay \(QS:y = \frac{b}{a}x\) Luyện tập Viết phương trình chính tắc của hypebol có một đỉnh là \({A_2}\left( {5;0} \right)\) và một đường tiệm cận là \(y = - 3x\) Phương pháp giải: Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có: + 2 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\) + Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{b}{a}x,y = \frac{b}{a}x\) Lời giải chi tiết: + Ta có hypebol có đỉnh \({A_2}(a;0) = \left( {5;0} \right) \Rightarrow a = 5\) + Hypebol có đường tiệm cận là \(y = - 3x \Rightarrow \frac{b}{a} = 3 \Rightarrow b = 3a = 15\) Vậy phương trình hypebol là: \(\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{{15}^2}}} = 1\)
|