Giải bài tập 5.35 trang 127 SGK Toán 9 tập 1 - Cùng khám phá

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn với \(MO = 2R\), vẽ hai tiếp tuyến tiếp xúc (O) tại A và B. Viết công thức tính phần diện tích nằm ngoài đường tròn (O) của tứ giác MAOB theo R.

Đề bài

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn với \(MO = 2R\), vẽ hai tiếp tuyến tiếp xúc (O) tại A và B. Viết công thức tính phần diện tích nằm ngoài đường tròn (O) của tứ giác MAOB theo R.

Phương pháp giải - Xem chi tiết

+ Tính số đo góc AOM, từ đó tính được góc AOB, từ đó tính được số đo cung nhỏ AB.

+ Chứng minh \(\Delta OAM = \Delta OBM\left( {c.g.c} \right)\), suy ra \({S_{\Delta OAM}} = {S_{\Delta OBM}}\) nên \({S_{OAMB}} = {S_{\Delta OAM}} + {S_{\Delta OBM}} = 2{S_{\Delta OAM}}\).

+ Diện tích hình quạt tâm O, cung nhỏ AB là: ${{S}_{q}}=\frac{\pi .O{{A}^{2}}.sđ{{\overset\frown{AB}}_{nhỏ}}}{{{360}^{o}}}$.

+ Diện tích nằm ngoài đường tròn (O) của tứ giác MAOB là: \(S = {S_{OAMB}} - {S_q}\).

Lời giải chi tiết

 

Vì MA, MB là tiếp tuyến của (O) nên

+ \(MA = MB\).

+ OA là tia phân giác của góc AOB, suy ra \(\widehat {AOM} = \widehat {MOB} = \frac{1}{2}\widehat {AOB}\).

Vì MA là tiếp tuyến của (O) nên \(MA \bot AO\) nên \(\Delta AOM\) vuông tại A. Suy ra:

+ \(AM = \sqrt {M{O^2} - A{O^2}}  = \sqrt {{{\left( {2R} \right)}^2} - {R^2}}  = \sqrt 3 R\).

+ \(\cos AOM = \frac{{OA}}{{OM}} = \frac{R}{{2R}} = \frac{1}{2}\) nên \(\widehat {AOM} = {60^o}\), suy ra \(\widehat {AOB} = {2.60^o} = {120^o}\).

Vì AOB là góc ở tâm chắn cung nhỏ AB nên số đo cung nhỏ AB bằng 120 độ.

Vì tam giác AOM vuông tại A nên

\({S_{AOM}} = \frac{1}{2}OA.AM = \frac{1}{2}.R.R\sqrt 3  = \frac{{{R^2}\sqrt 3 }}{3}\).

Tam giác OAM và tam giác OBM có:

\(OA = OB\) (= bán kính (O)),

\(OM\) chung,

\(\widehat {AOM} = \widehat {MOB}\left( {cmt} \right)\)

Do đó, \(\Delta OAM = \Delta OBM\left( {c.g.c} \right)\).

Suy ra, \({S_{OAMB}} = {S_{\Delta OAM}} + {S_{\Delta OBM}} = 2{S_{\Delta OAM}} = \frac{{2{R^2}\sqrt 3 }}{3}\).

Diện tích hình quạt tâm O, cung nhỏ AB là:

${{S}_{q}}=\frac{\pi .O{{A}^{2}}.sđ{{\overset\frown{AB}}_{nhỏ}}}{360}=\frac{\pi .{{R}^{2}}.120}{360}=\frac{\pi .{{R}^{2}}}{3}$.

Diện tích nằm ngoài đường tròn (O) của tứ giác MAOB là: \(S = {S_{OAMB}} - {S_q} = \frac{{2{R^2}\sqrt 3 }}{3} - \frac{{\pi .{R^2}}}{3} = \frac{{{R^2}}}{3}\left( {2\sqrt 3  - \pi } \right)\).

  • Giải bài tập 5.36 trang 127 SGK Toán 9 tập 1 - Cùng khám phá

    Cho hai đường tròn tâm O và I cắt nhau tại M và N. Vẽ một đường thẳng qua M cắt (O) tại A và cắt (I) tại B, một đường thẳng qua N cắt (O) tại C và (I) tại D. Chứng minh rằng AC//BD.

  • Giải bài tập 5.37 trang 127 SGK Toán 9 tập 1 - Cùng khám phá

    Trong Hình 5.74, độ dài cạnh của các hình vuông lớn là 10cm. Tính diện tích và chu vi của phần được tô màu.

  • Giải bài tập 5.38 trang 127 SGK Toán 9 tập 1 - Cùng khám phá

    Tính chu vi đĩa sứ và diện tích phần viền tráng men xanh của đĩa sứ trong Hình 5.75.

  • Giải bài tập 5.39 trang 128 SGK Toán 9 tập 1 - Cùng khám phá

    Trong Hình 5.76, hai puly có dạng hình tròn tâm A bán kính 12,5cm và tâm B bán kính 7cm được nối bằng dây curoa. Khoảng cách giữa tâm của hai puly là (AB = 30cm). Đoạn dây CD, EF tiếp xúc với cả hai puly. Tính: a) Độ dài CD và số đo các góc của tứ giác ABCD; b) Độ dài dây curoa. Làm tròn độ dài đến hàng phần mười centimét, số đo góc đến phút.

  • Giải bài tập 5.40 trang 128 SGK Toán 9 tập 1 - Cùng khám phá

    Trong Hình 5.77, mỗi làn chạy của sân vận động được thiết kế gồm hai phần là đường chạy thẳng và hai phần có dạng nửa đường tròn. Trong một cuộc thi điền kinh, vận động viên ở làn trong cùng xuất phát từ vị trí điểm A, chạy ngược chiều kim đồng hồ đúng một vòng và về đích ở điểm A. a) Tính cự li chạy của cuộc thi (tổng quãng đường vận động viên phải chạy). b) Để đảm bảo cự li chạy như nhau, vận động viên ở làn ngoài cùng không chạy đúng một vòng mà xuất phát từ vị trí điểm B và về đích ở điểm

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close