Giải bài tập 4.4 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Tìm: a) (int {left( {2cos x - frac{3}{{{{sin }^2}x}}} right)} dx); b) (int {4{{sin }^2}frac{x}{2}} dx); c) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}} dx); d) (int {left( {x + {{tan }^2}x} right)} dx).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Tìm:

a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx\);

b) \(\int {4{{\sin }^2}\frac{x}{2}} dx\);

c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx\);

d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx} \)

Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)

Sử dụng kiến thức về nguyên hàm của hàm số lượng giác để tính:

\(\int {\cos x} dx = \sin x + C,\int {\sin x} dx =  - \cos x + C,\int {\frac{1}{{{{\cos }^2}x}}} dx = \tan x + C,\int {\frac{1}{{{{\sin }^2}x}}} dx =  - \cot x + C\)

Lời giải chi tiết

a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx = 2\int {\cos x} dx - 3\int {\frac{1}{{{{\sin }^2}x}}} dx = 2\sin x + 3\cot x + C\)

b) Từ công thức nhân đôi \(\cos 2x = 1 - 2{\sin ^2}x\), áp dụng vào bài ta có:

\(\cos x = 1 - 2{\sin ^2}\frac{x}{2} \Leftrightarrow 2{\sin ^2}\frac{x}{2} = 1 - \cos x \Leftrightarrow 4{\sin ^2}\frac{x}{2} = 2(1 - \cos x)\)

Từ đó suy ra:

\(\int {4{{\sin }^2}\frac{x}{2}} dx = \int {2\left( {1 - \cos x} \right)} dx = 2\int {dx - 2\int {\cos x} dx = 2x - 2\sin x + C} \)

c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx = \int {\left( {{{\sin }^2}\frac{x}{2} + {{\cos }^2}\frac{x}{2} - 2\sin \frac{x}{2}.\cos \frac{x}{2}} \right)} dx = \int {\left( {1 - \sin x} \right)} dx\)

\( = \int {dx}  - \int {\sin x} dx = x + \cos x + C\)

d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx = \int {xdx}  + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx}  = \frac{{{x^2}}}{2} + \tan x - x + C\)

  • Giải bài tập 4.5 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\). Biết rằng \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\) và \(f\left( 1 \right) = 1\). Tính giá trị f(4).

  • Giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).

  • Giải bài tập 4.7 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

    Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v\left( t \right) = 160 - 9,8t\left( {m/s} \right)\). Tìm độ cao của viên đạn (tính từ mặt đất). a) Sau \(t = 5\) giây; b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).

  • Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

    Tìm: a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\); b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\); c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\); d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).

  • Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

    Tìm nguyên hàm của các hàm số sau: a) \(f\left( x \right) = 3{x^2} + 2x - 1\); b) \(f\left( x \right) = {x^3} - x\); c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\); d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close