Giải bài tập 4.21 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức

Họ tất cả các nguyên hàm của hàm số \(2{e^x}\) là A. \(2x{e^x} + C\). B. \( - 2{e^x} + C\). C. \(2{e^x}\). D. \(2{e^x} + C\).

Đề bài

Họ tất cả các nguyên hàm của hàm số \(2{e^x}\) là

A. \(2x{e^x} + C\).

B. \( - 2{e^x} + C\).

C. \(2{e^x}\).

D. \(2{e^x} + C\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx} \)

Sử dụng kiến thức về nguyên hàm của hàm số mũ để tính: \(\int {{e^x}dx}  = {e^x} + C\)

 

Lời giải chi tiết

Ta có: \(\int {2{e^x}} dx = 2\int {{e^x}} dx = 2{e^x} + C\)

Chọn D.

 

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close