Giải bài 8 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Phương trình nào dưới đây là phương trình của đường thẳng đi qua (Aleft( {2;3;0} right)) và vuông góc với mặt phẳng (left( P right):x + 3y - z + 5 = 0)? A. (left{ begin{array}{l}x = 1 + t\y = 1 + 3t\z = 1 - tend{array} right.). B. (left{ begin{array}{l}x = 1 + t\y = 3t\z = 1 - tend{array} right.). C. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 - tend{array} right.). D. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 + tend{array} right.).

Đề bài

Phương trình nào dưới đây là phương trình của đường thẳng đi qua A(2;3;0) và vuông góc với mặt phẳng (P):x+3yz+5=0?

A. {x=1+ty=1+3tz=1t.

B. {x=1+ty=3tz=1t.

C. {x=1+3ty=1+3tz=1t.

D. {x=1+3ty=1+3tz=1+t.

Phương pháp giải - Xem chi tiết

Phương trình tham số của đường thẳng Δ đi qua M0(x0;y0;z0) và có vectơ chỉ phương u=(a;b;c) là: {x=x0+aty=y0+btz=z0+ct.

Lời giải chi tiết

Mặt phẳng (P):x+3yz+5=0 có vectơ pháp tuyến n=(1;3;1).

Do đó, n=(1;3;1) là vectơ chỉ phương của đường thẳng vuông góc với mặt phẳng (P).

Phương trình đường thẳng d đi qua A(2;3;0) vuông góc với mặt phẳng (P) là: {x=2+ty=3+3tz=t.

Cho t=1 ta có đường thẳng d đi qua B(1;0;1). Vậy phương trình đường thẳng d là: {x=1+ty=3tz=1t.

Chọn B.

  • Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Phương trình nào sau đây không phải là phương trình của một mặt cầu? A. ({x^2} + {y^2} + {z^2} + {bf{x}} - 2y + 4z - 3 = 0). B. (2{x^2} + 2{y^2} + 2{{rm{z}}^2} - {bf{x}} - y - {bf{z}} = 0). C. ({x^2} + {y^2} + {{bf{z}}^2} - 2{bf{x}} + 4y - 4z + 10 = 0). D. (2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0).

  • Giải bài 10 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Cho ({x^2} + {y^2} + {z^2} + 2{rm{x}} - 4y + 4{rm{z}} + m = 0) là phương trình của một mặt cầu ((m) là tham số). Tất cả các giá trị của (m) là: A. (m < 9). B. (m le 9). C. (m > 9). D. (m ge 9).

  • Giải bài 11 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Mặt cầu có phương trình nào sau đây đi qua gốc toạ độ? A. (left( {{S_1}} right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2 = 0). B. (left( {{S_2}} right):{x^2} + {y^2} + {z^2} - 4y + 6{rm{z}} - 2 = 0). C. (left( {{S_3}} right):{x^2} + {y^2} + {z^2} + 2{rm{x}} + 6{rm{z}} = 0). D. (left( {{S_4}} right):{x^2} + {y^2} + {{bf{z}}^2} + 2x - 4y + 6{rm{z}} - 2 = 0).

  • Giải bài 12 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z - 3} right)^2} = 9), Điểm nào sau đây nằm ngoài mặt cầu (left( S right))? A. (Mleft( { - 1;2;5} right)). B. (Nleft( {0;3;2} right)). C. (Pleft( { - 1;6; - 1} right)). D. (Qleft( {2;4;5} right)).

  • Giải bài 13 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt phẳng (left( P right)) đi qua ba điểm (Aleft( {0;1;1} right),Bleft( {3;2;2} right),Cleft( {4;3;5} right)). a) Mặt phẳng (left( P right)) có cặp vectơ chỉ phương là (overrightarrow {AB} = left( {3;1;1} right);overrightarrow {AC} = left( {4;2;4} right)). b) Mặt phẳng (left( P right)) có vectơ pháp tuyến là (overrightarrow n = left( {1;4;1} right)). c) Mặt phẳng (left( P right)) đi qua điểm (Mleft( {1;2

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close