Giải bài 6.18 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2Tìm hai số u và v, biết: a) (u + v = 17,uv = 72); b) ({u^2} + {v^2} = 73,uv = 24). Tổng hợp Đề thi vào 10 có đáp án và lời giải Toán - Văn - Anh Đề bài Tìm hai số u và v, biết: a) \(u + v = 17,uv = 72\); b) \({u^2} + {v^2} = 73,uv = 24\). Phương pháp giải - Xem chi tiết + Hai số cần tìm là hai nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)), với S là tổng của hai số, P là tích của hai số. + Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn). Lời giải chi tiết a) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 17x + 72 = 0\) Ta có: \(\Delta = {\left( { - 17} \right)^2} - 4.1.72 = 1 > 0,\sqrt \Delta = 1\) Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{17 + 1}}{2} = 9;{x_2} = \frac{{17 - 1}}{2} = 8\). Vậy \(\left( {u;v} \right) = \left( {8;9} \right)\) hoặc \(\left( {u;v} \right) = \left( {8;9} \right)\). b) Ta có: \({u^2} + {v^2} = 73\) nên \({u^2} + 2uv + {v^2} - 2uv = 73\), suy ra \({\left( {u + v} \right)^2} - 2.24 = 73\), suy ra \({\left( {u + v} \right)^2} = 121\). Do đó, \(u + v = 11\) hoặc \(u + v = - 11\). TH1: \(u + v = 11\), \(uv = 24\) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 11x + 24 = 0\). Ta có: \(\Delta = {\left( { - 11} \right)^2} - 4.1.24 = 25\) nên phương trình có hai nghiệm: \({x_1} = \frac{{11 + \sqrt {25} }}{2} = 8;{x_2} = \frac{{11 - \sqrt {25} }}{2} = 3\) TH2: \(u + v = - 11\), \(uv = 24\) Hai số cần tìm là hai nghiệm của phương trình \({x^2} + 11x + 24 = 0\). Vì \(\Delta = {11^2} - 4.1.24 = 25\) nên phương trình có hai nghiệm: \({x_1} = \frac{{ - 11 + \sqrt {25} }}{2} = - 3;{x_2} = \frac{{ - 11 - \sqrt {25} }}{2} = - 8\) Vậy \(\left( {u;v} \right) \in \left\{ {\left( {8;3} \right);\left( {3;8} \right);\left( { - 8; - 3} \right);\left( { - 3; - 8} \right)} \right\}\).
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
|