Giải bài 4.19 trang 48 sách bài tập toán 9 - Kết nối tri thức tập 1

Gọi AH là đường cao của tam giác ABC vuông tại A. Tính (tan widehat {ABH}) và (tan widehat {CAH}), suy ra (A{H^2} = BH.CH).

Đề bài

Gọi AH là đường cao của tam giác ABC vuông tại A. Tính \(\tan \widehat {ABH}\) và \(\tan \widehat {CAH}\), suy ra \(A{H^2} = BH.CH\).

Phương pháp giải - Xem chi tiết

+ Xét tam giác ABC vuông tại A có góc nhọn B bằng \(\alpha \) thì tỉ số giữa cạnh đối và cạnh kề gọi là tan của \(\alpha \).

+ Hai góc phụ nhau thì tan góc này bằng côtang góc kia.

Lời giải chi tiết

Tam giác AHC vuông tại H nên \(\tan \widehat {CAH} = \frac{{HC}}{{AH}}\), \(\tan \widehat {ACH} = \frac{{AH}}{{HC}}\)

Tam giác AHB vuông tại H nên \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\).

Hai góc ABH và ACH là hai góc phụ nhau nên \(\tan \widehat {ABH} = \cot \widehat {ACH} = \frac{1}{{\tan \widehat {ACH}}}\).

Do đó \(\frac{{AH}}{{BH}} = \frac{{HC}}{{AH}}\).

Suy ra \(A{H^2} = BH.CH\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close