Giải bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {OI} .\) Phương pháp giải - Xem chi tiết - Tính chất trun điểm: \(\overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {IM} \) - Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \) Lời giải chi tiết Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IC} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {ID} } \right)\) \(\begin{array}{l} = 4\overrightarrow {OI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\\ = 4\overrightarrow {OI} + 2\overrightarrow {IM} + 2\overrightarrow {IN} \\ = 4\overrightarrow {OI} \end{array}\)
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
|