Giải bài 30 trang 17 sách bài tập toán 12 - Cánh diềuGiá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. 0. B. ‒2. C. 1. D. ‒5. Đề bài Giá trị nhỏ nhất của hàm số \(y = \frac{{2{\rm{x}} + 1}}{{1 - x}}\) trên đoạn \(\left[ {2;3} \right]\) bằng: A. 0. B. ‒2. C. 1. D. ‒5. Phương pháp giải - Xem chi tiết Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\): Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại. Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\). Bước 3. So sánh các giá trị tìm được ở Bước 2. Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\). Lời giải chi tiết Ta có: \(y' = \frac{3}{{{{\left( {1 - x} \right)}^2}}} > 0,\forall x \in \left[ {2;3} \right]\) \(y\left( 2 \right) = - 5;y\left( 3 \right) = - \frac{7}{2}\). Vậy \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = - 5\) tại \({\rm{x}} = 2\) Chọn D.
|