Giải bài 34 trang 18 sách bài tập toán 12 - Cánh diều

Giá trị lớn nhất của hàm số (y = {e^{{x^3} - 3{rm{x}} + 3}}) trên đoạn (left[ {0;2} right]) bằng: A. ({e^2}). B. ({e^3}). C. ({e^5}). D. (e).

Đề bài

Giá trị lớn nhất của hàm số \(y = {e^{{x^3} - 3{\rm{x}} + 3}}\) trên đoạn \(\left[ {0;2} \right]\) bằng:

A. \({e^2}\).                

B. \({e^3}\).                

C. \({e^5}\).                

D. \(e\).

Phương pháp giải - Xem chi tiết

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

Ta có: \(y' = {\left( {{x^3} - 3{\rm{x}} + 3} \right)^\prime }.{e^{{x^3} - 3{\rm{x}} + 3}} = \left( {3{\rm{x}} - 3} \right).{e^{{x^3} - 3{\rm{x}} + 3}}\)

Khi đó, trên đoạn \(\left[ {0;2} \right]\), \(y' = 0\) khi \(x = 1\).

\(y\left( 0 \right) = {e^3};y\left( 1 \right) = e;y\left( 2 \right) = {e^5}\).

Vậy \(\mathop {\max }\limits_{\left[ {0;\frac{\pi }{2}} \right]} y = {e^5}\) tại \(x = 2\).

Chọn C.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close