Giải bài 3 trang 115 SGK Toán 7 tập 2 - Cánh diều

Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.

Phương pháp giải - Xem chi tiết

Chứng minh tam giác ABC đều bằng cách chứng minh AB = BC = CA.

Lời giải chi tiết

Gọi M, N, P lần lượt là các trung điểm của các đoạn thẳng BC, AC, AB.

Ta có: G là giao điểm của ba đường trung tuyến trong tam giác ABC.

G cũng là giao điểm của ba đường trung trực trong tam giác ABC nên AM, BN, CP là các đường trung trực của tam giác ABC hay \(AM \bot BC;BN \bot AC;CP \bot AB\).

Xét tam giác ABM và tam giác ACM có:

     AM chung;

     \(\widehat {AMB} = \widehat {AMC} (= 90^\circ \))(vì \(AM \bot BC\));

     BM = MC (M là trung điểm của BC).

Vậy \(\Delta ABM = \Delta ACM\)(c.g.c). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có:

     \(\Delta BNA = \Delta BNC\)(c.g.c). Suy ra: AB = BC( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close