Giải bài 27 trang 71 sách bài tập toán 9 - Cánh diều tập 2

Cho phương trình ({x^2} + 2left( {2m - 1} right)x - 4{m^2} - 1 = 0.) a) Chứng tỏ rằng phương trình luôn có hai nghiệm ({x_1};{x_2})với mọi giá trị của m. b) Tìm biểu thức liên hệ giữa hai nghiệm ({x_1};{x_2}) không phụ thuộc vào giá trị của m.

Đề bài

Cho phương trình \({x^2} + 2\left( {2m - 1} \right)x - 4{m^2} - 1 = 0.\)

a) Chứng tỏ rằng phương trình luôn có hai nghiệm \({x_1};{x_2}\)với mọi giá trị của m.

b) Tìm biểu thức liên hệ giữa hai nghiệm \({x_1};{x_2}\) không phụ thuộc vào giá trị của m.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta  \ge 0\forall m \in \mathbb{R}\) hoặc \(\Delta ' \ge 0\forall m \in \mathbb{R}\).

b) Bước 1: Áp dụng định lý Viète để tính \({x_1} + {x_2};{x_1}{x_2}\).

Bước 2: Biến đổi biểu thức để không chứa m nữa (có thể bình phương, nhân với một số,…).

Lời giải chi tiết

Phương trình có các hệ số \(a = 1;b = 2\left( {2m - 1} \right);c =  - 4{m^2} - 1\), do đó \(b' = \frac{b}{2} = 2m - 1\).

Ta có:

\(\Delta ' = {\left( {2m - 1} \right)^2} - 1.\left( { - 4{m^2} - 1} \right) \\= {\left( {2m - 1} \right)^2} + 4{m^2} + 1.\)

Do \({\left( {2m - 1} \right)^2} \ge 0;4{m^2} \ge 0;1 > 0\) nên \({\left( {2m - 1} \right)^2} + 4{m^2} + 1 > 0\) với mọi \( m \in \mathbb{R}\) hay \(\Delta ' \ge 0\) với mọi \(m \in \mathbb{R}\).

Vì \(\Delta ' \ge 0\)  nên phương trình luôn có 2 nghiệm với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm nên áp dụng định lý Viète ta có:

\({x_1} + {x_2} =  - 2\left( {2m - 1} \right);{x_1}.{x_2} =  - 4{m^2} - 1.\)

Ta có:

\({\left( {{x_1} + {x_2} + 2} \right)^2} \\= {\left( { - 2\left( {2m - 1} \right) + 2} \right)^2} \\= 16{m^2} + 16\)

và \(4.{x_1}.{x_2} = 4\left( { - 4{m^2} - 1} \right) =  - 16{m^2} - 4\)

Suy ra

\({\left( {{x_1} + {x_2} + 2} \right)^2} + 4.{x_1}.{x_2} \\= 16{m^2} + 16 - 16{m^2} - 4 = 12.\)

Vậy hệ thức cần tìm là \({\left( {{x_1} + {x_2} + 2} \right)^2} + 4.{x_1}.{x_2}\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close