Bài 2.13 phần bài tập bổ sung trang 110 SBT toán 9 tập 1Giải bài 2.13 phần bài tập bổ sung trang 110 sách bài tập toán 9. Hãy tìm sinα, tgα, cotgα ( 0º < α < 90º ). Đề bài Cho \(\cos \alpha = \dfrac{3}{4}.\) Hãy tìm \(\sin \alpha ,tg\alpha ,\cot \alpha \) ( 0º < α < 90º). Phương pháp giải - Xem chi tiết Ta sử dụng các kiến thức sau: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) \(tg\alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }};{\mathop{\rm \cot}\nolimits} \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }}\) \(tg\alpha .\cot \alpha = 1.\) Lời giải chi tiết Vì \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) nên \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha }\)\( = \sqrt {1 - \dfrac{9}{{16}}} = \dfrac{{\sqrt 7 }}{4}.\) \(tg\alpha = \dfrac{{\sin \alpha }}{{{\rm{cos}}\alpha }} =\dfrac{{\dfrac{{\sqrt 7 }}{4}}}{{\dfrac{3}{4}}}= \dfrac{{\sqrt 7 }}{3}\) Vì \(tg\alpha .\cot \alpha = 1\) nên \(\cot \alpha = \dfrac{1 }{ {tg\alpha }} = \dfrac{3}{{\sqrt 7 }} = \dfrac{{3\sqrt 7 }}{7}.\) HocTot.Nam.Name.Vn
|