Giải bài 20 trang 79 sách bài tập toán 12 - Chân trời sáng tạoChọn đúng hoặc sai cho mỗi ý a, b, c, d Hai vật đang chuyển động với vectơ vận tốc lần lượt là (overrightarrow a = left( {2;1;5} right)) và (overrightarrow b = left( {8;4;20} right)). a) Hai vật đang chuyển động cùng hướng. b) (overrightarrow a .overrightarrow b = 120). c) (cos left( {overrightarrow a ,overrightarrow b } right) = 1). d) (cos left( {overrightarrow a ,overrightarrow b } right) = 0). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Chọn đúng hoặc sai cho mỗi ý a, b, c, d Hai vật đang chuyển động với vectơ vận tốc lần lượt là \(\overrightarrow a = \left( {2;1;5} \right)\) và \(\overrightarrow b = \left( {8;4;20} \right)\). a) Hai vật đang chuyển động cùng hướng. b) \(\overrightarrow a .\overrightarrow b = 120\). c) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1\). d) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\). Phương pháp giải - Xem chi tiết ‒ Sử dụng tính chất hai vectơ cùng phương: Với \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) và \(\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right),\overrightarrow b \ne \overrightarrow 0 \), Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khi và chỉ khi tồn tại số \(k\) sao cho \(\left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_3} = k{b_3}\end{array} \right.\). ‒ Sử dụng công thức tính tích vô hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\): \(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}\). ‒ Sử dụng công thức tính góc giữa hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\): \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\). Lời giải chi tiết Ta có: \(\overrightarrow b = 4\overrightarrow a \). Do đó hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng. Vậy hai vật đang chuyển động cùng hướng. Vậy a) đúng. \(\overrightarrow a .\overrightarrow b = 2.8 + 1.4 + 5.20 = 120\). Vậy b) đúng. \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{2.8 + 1.4 + 5.20}}{{\sqrt {{2^2} + {1^2} + {5^2}} .\sqrt {{8^2} + {4^2} + {{20}^2}} }} = 1\). Vậy c) đúng, d) sai. a) Đ. b) Đ. c) Đ. d) S.
|