Giải bài 12 trang 27 sách bài tập toán 8 - Chân trời sáng tạoThu gọn các biểu sau: a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2}\); Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiên Đề bài Thu gọn các biểu sau: a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2}\); b) \({\left( {3a - b} \right)^2} - \left( {a - 2b} \right)\left( {2b - a} \right)\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về hằng đẳng thức để tính: \(\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\), \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\) Lời giải chi tiết a) \(\left( {a - 4} \right)\left( {a + 4} \right) + {\left( {2a - 1} \right)^2} = {a^2} - 16 + 4{a^2} - 4a + 1 = \left( {{a^2} + 4{a^2}} \right) - 4a + \left( {1 - 16} \right)\) \( = 5{a^2} - 4a - 15\) b) \({\left( {3a - b} \right)^2} - \left( {a - 2b} \right)\left( {2b - a} \right) = 9{a^2} - 6ab + {b^2} + {\left( {a - 2b} \right)^2}\) \( = 9{a^2} - 6ab + {b^2} + {a^2} - 4ab + 4{b^2}\)\( = \left( {9{a^2} + {a^2}} \right) - \left( {6ab + 4ab} \right) + \left( {4{b^2} + {b^2}} \right)\) \( = 10{a^2} - 10ab + 5{b^2}\)
|