-
Bài 5.44 trang 86
Cho hình chóp S.ABCD với ABCD là hình chữ nhật có A(0; 0; 0), B(1; 0; 0), D(0; 3; 0), S(0; 0; 2). a) Tính khoảng cách từ A đến mặt phẳng (SBD). b) Tính sin của góc giữa đường thẳng SD và mặt phẳng (SAB). c) Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD).
Xem lời giải -
Bài 5.45 trang 86
Cho hai điểm A(1; 3; 0) và B(5; 1; −2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
Xem lời giải -
Bài 5.46 trang 86
Cho mặt phẳng (left( alpha right)) đi qua điểm M(0; 0; −1), có cặp vectơ chỉ phương là (vec a = left( { - 1;2; - 3} right)) và (vec b = left( {3;0;5} right)). Phương trình của mặt phẳng (left( alpha right)) là
Xem chi tiết -
Bài 5.47 trang 86
Cho ba điểm A(3; 0; 1), B(0; 2; 1), C(1; 0; 0). Phương trình của mặt phẳng (ABC) là A. \(2x - 3y - 4z + 2 = 0\) B. \(2x + 3y - 4z - 2 = 0\) C. \(4x + 6y - 8z + 2 = 0\) D. \(2x - 3y - 4z + 1 = 0\)
Xem lời giải -
Bài 5.48 trang 86
Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là A. \(3x + y - 2z - 14 = 0\) B. \(3x - y + 2z + 6 = 0\) C. \(3x - y + 2z - 6 = 0\) D. \(3x - y - 2z + 6 = 0\)
Xem lời giải -
Bài 5.49 trang 87
Cho mặt phẳng ((alpha )): 2x + y − 3z + 8 = 0. Mặt phẳng nào sau đây vuông góc với mặt phẳng ((alpha ))? A. x – 3y + 3z – 7 = 0 B. 3x – 3y + z – 7 = 0 C. x + 2y – z – 8 = 0 D. x – 2y + z + 8 = 0
Xem lời giải -
Bài 5.50 trang 87
Cho đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). Phương trình tham số của đường thẳng \(\Delta \) là: \({\rm{A}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{B}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{C}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 +
Xem lời giải -
Bài 5.51 trang 87
Cho hai điểm \(A(1; - 2; - 3)\), \(B( - 1;4;1)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với \(d\)? \({\rm{A}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\) \({\rm{B}}{\rm{. }}d':\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\) \({\rm{C}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
Xem lời giải -
Bài 5.52 trang 87
Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{
Xem lời giải -
Bài 5.53 trang 87
Cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 2 + 3t}\\{z = 3 + 4t\quad (t \in \mathbb{R})}\end{array}} \right.\) và \({d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 4t'}\\{y = 5 + 6t'}\\{z = 7 + 8t'\quad (t' \in \mathbb{R})}\end{array}} \right.\). Trong các mệnh đề sau, mệnh đề nào đúng? A. \({d_1}\) và \({d_2}\) cắt nhau. B. \({d_1}\parallel {d_2}\). C. \({d_1} \equiv {d_2}\). D. \({d_1}\) và \({d_2}\) chéo nhau.
Xem lời giải