Nội dung từ Loigiaihay.Com
Cho $\Delta GHI\backsim \Delta FEI$ có các kính thước như hình vẽ, khi đó tỉ số độ dài của y và x bằng:
Từ hai tam giác đồng dạng suy ra tỉ số đồng dạng
Vì $\Delta GHI\backsim \Delta FEI$ nên \(\frac{x}{y} = \frac{{IF}}{{GI}} = \frac{{EF}}{{GH}} = \frac{{12}}{8} = \frac{3}{2}\).
Đáp án C.
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình \(x + 5 = x + 5\) có
Năm nay tuổi cha 39 tuổi và gấp 3 lần tuổi con năm ngoái. Vậy năm nay tuổi con là
Hãy chỉ ra cặp tam giác đồng dạng trong các tam giác sau
Giải các phương trình sau:
a) \(2x - 4 = 3x + 1\)
b) \(7\left( {5 - x} \right) = 11 - 5x\)
c) \(\frac{5}{6} + \frac{x}{4} = 2 - \frac{x}{3}\)
d) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{{1 + 3x}}{4} + \frac{1}{2}\)
Cho \(\Delta ABC\) vuông tại A có \(AB = 6cm\) và \(AC = 8cm\). Đường phân giác của góc ABC cắt AC tại D. Từ C kẻ \(CE \bot BD\) kẻ E.
a) Tính độ dài BC và tỉ số \(\frac{{AD}}{{DC}}\).
b) Chứng minh $\Delta ABD\backsim \Delta EBC$. Từ đó suy ra \(BD.EC = AD.BC\).
c) Chứng minh \(\frac{{CD}}{{BC}} = \frac{{CE}}{{BE}}\).
d) Gọi EH là đường cao của \(\Delta EBC\). Chứng minh \(CH.HB = ED.EB\).