Đề bài

Cho \(\Delta MNI \backsim \Delta ABC\) theo tỉ số \(k = \frac{5}{7}\) và hiệu chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác.

  • A.
    \({C_{\Delta MNI}} = 30m,{C_{\Delta ABC}} = 46m.\)
  • B.
    \({C_{\Delta MNI}} = 56m,{C_{\Delta ABC}} = 40m.\)
  • C.
    \({C_{\Delta MNI}} = 24m,{C_{\Delta ABC}} = 40m.\)
  • D.
    \({C_{\Delta MNI}} = 40m,{C_{\Delta ABC}} = 56m.\)
Phương pháp giải
Dựa vào hai tam giác đồng dạng tính tỉ số chu vi của hai tam giác. Từ đó tính chu vi của mỗi tam giác.
Lời giải của GV HocTot.Nam.Name.Vn

\(\Delta MNI \backsim \Delta ABC\) theo tỉ số \(k = \frac{5}{7}\)

\(\begin{array}{l} \Rightarrow \frac{{MN}}{{AB}} = \frac{{MI}}{{AC}} = \frac{{NI}}{{BC}} = \frac{{MN + MI + NI}}{{AB + AC + BC}} = \frac{5}{7}\\ \Rightarrow \frac{{C{V_{\Delta MNI}}}}{{C{V_{\Delta ABC}}}} = \frac{5}{7} \Rightarrow \frac{{C{V_{\Delta MNI}}}}{{C{V_{\Delta ABC}} - C{V_{\Delta MNI}}}} = \frac{5}{{7 - 5}}\\ \Rightarrow \frac{{C{V_{\Delta MNI}}}}{{16}} = \frac{5}{2} \Rightarrow C{V_{\Delta MNI}} = \frac{{16.5}}{2} = 40(cm).\\ \Rightarrow C{V_{\Delta ABC}} = 40 + 16 = 56(cm).\end{array}\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Hãy chọn câu đúng.

Xem lời giải >>
Bài 2 :

Hãy chọn câu sai.

Xem lời giải >>
Bài 3 :

Cho \(\Delta ABC,\Delta MNP\) nếu có \(\widehat A = \widehat M;\widehat B = \widehat N;\widehat C = \widehat P\) để \(\Delta ABC \backsim \Delta MNP\) theo định nghĩa hai tam giác đồng dạng thì cần bổ sung thêm điều kiện nào?

Xem lời giải >>
Bài 4 :

Cho \(\Delta ABC \backsim \Delta MNP\) theo tỉ số 2. Khẳng định nào sau đây là đúng

Xem lời giải >>
Bài 5 :

Hãy chọn câu đúng

Nếu \(\Delta ABC \backsim \Delta MNP\) theo tỉ số \(k = \frac{2}{3}\) thì \(\Delta MNP \backsim \Delta ABC\) theo tỉ số

Xem lời giải >>
Bài 6 :

Cho \(\Delta ABC,\Delta MNP\) biết \(AB = 3cm;AC = 4cm;BC = 5cm;MN = 6cm;MP = 8cm;NP = 10cm\) và \(\widehat A = {90^o};\widehat B = {60^o};\widehat M = {90^o};\widehat P = {30^o}\) thì:

Xem lời giải >>
Bài 7 :

Cho \(\Delta ABC \backsim \Delta D{\rm{EF}}\) biết \(\widehat A = {50^o};\widehat B = {60^o}\) . Khi đó số đo góc D bằng

Xem lời giải >>
Bài 8 :

Cho tam giác ABC, trên AB lấy điểm D. Qua D kẻ đường thẳng song song với BC cắt AC ở E. Khẳng định nào sau đâyđúng

Xem lời giải >>
Bài 9 :

Cho \(\Delta ABC \backsim \Delta DEF\) theo tỉ số \({k_1}\) , \(\Delta MNP \backsim \Delta D{\rm{EF}}\) theo tỉ số \({k_2}\) . Hỏi \(\Delta ABC \backsim \Delta MNP\) theo tỉ số nào ?

Xem lời giải >>
Bài 10 :

Cho \(\Delta ABC \backsim \Delta MNP\) . Biết \(AB = 5cm;BC = 6cm;MN = 10cm;MP = 5cm\) . Hãy chọn đáp án đúng:

Xem lời giải >>
Bài 11 :

Cho hình vẽ, biết AB // DE. Tính tỉ số độ dài của x và y.

Xem lời giải >>
Bài 12 :

Cho \(\Delta ABC \backsim \Delta {A_1}{B_1}{C_1}\) theo tỉ số \(2:3\) và \(\Delta {A_1}{B_1}{C_1} \backsim \Delta {A_2}{B_2}{C_2}\) theo tỉ số 1 :3. Vậy \(\Delta ABC \backsim \Delta {A_2}{B_2}{C_2}\) theo tỉ số k bằng

Xem lời giải >>
Bài 13 :

Cho \(\Delta {A_1}{B_1}{C_1} \backsim \Delta ABC\) theo tỉ số đồng dạng \(k = \frac{2}{3}\) . Tỉ số chu vi của hai tam giác đó là:

Xem lời giải >>
Bài 14 :

Cho hình bình hành ABCD.Trên đường chéo AC lấy điểm E sao cho AC = 3.AE. Qua E vẽ đường thẳng song song với CD cắt AD và BC theo thứ tự ở M và N. Cho các khẳng định sau:

\((I)\Delta AME \backsim \Delta A{\rm{D}}C\) , tỉ số đồng dạng \({k_1} = \frac{1}{3}\)

\((II)\Delta CBA \backsim \Delta A{\rm{D}}C\) , tỉ số đồng dạng \({k_2} = 1\)

\((III)\Delta CNE \backsim \Delta A{\rm{D}}C\) , tỉ số đồng dạng \({k_3} = \frac{2}{3}\)

Chọn câu đúng:

Xem lời giải >>
Bài 15 :

Cho tam giác ABC , lấy M trên cạnh BC sao cho \(\frac{{MB}}{{MC}} = \frac{1}{2}\) Qua M kẻ đường thẳng song song với AC cắt AB tại D và đường thẳng song song với AB cắt AD tại E biết chu vi tam giác MEC bằng 24 cm thì chu vi tam giác DBM là

Xem lời giải >>