Bài 12 trang 106 SGK Toán 11 tập 2 - Kết nối tri thứcCho hình hộp (ABCD.A'B'C'D') có đáy ABCD là hình chữ nhật. Biết (AC = AA' = 2a). Đề bài Cho hình hộp \(ABCD.A'B'C'D'\) có đáy ABCD là hình chữ nhật. Biết \(AC = AA' = 2a\). Giá trị lớn nhất của thể tích hình hộp \(ABCD.A'B'C'D'\) bằng A. \(8{a^3}\). B. \(6{a^3}\). C. \(4{a^3}\). D. \({a^3}\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Thể tích khối lăng trụ \(V = h.S\) Lời giải chi tiết Ta có diện tích đáy \(S = AB.AC \le \frac{{A{B^2} + A{C^2}}}{2} = \frac{{A{C^2}}}{2} = \frac{{4{a^2}}}{2} = 2{a^2}\) Dấu “=” xảy ra khi AB = AC Chiều cao của hình hộp là \(h = AA'.\sin \left( {AA',\left( {ABCD} \right)} \right) \le AA' = 2a\) Dấu “=” xảy ra khi \(\left( {AA',\left( {ABCD} \right)} \right) = {90^0}\) Thể tích của hình hộp là \(V = h.S \le 2a.2{a^2} = 4{a^3}\) Dấu “=” xảy ra khi \(ABCD.A'B'C'D'\) là hình hộp đứng có đáy là hình vuông. Đáp án C
|