Bài 1 trang 53 SGK Hình học 11Cho điểm A không nằm trong mặt phẳng (α) chứa tam giác BCD. Lấy E,F là các điểm lần lượt nằm trên các cạnh AB, AC Đề bài Cho điểm AA không nằm trong mặt phẳng (α)(α) chứa tam giác BCDBCD. Lấy E,FE,F là các điểm lần lượt nằm trên các cạnh AB,ACAB,AC. a) Chứng minh đường thẳng EFEF nằm trong mặt phẳng (ABC)(ABC). b) Khi EFEF và BCBC cắt nhau tại II, chứng minh II là điểm chung của hai mặt phẳng (BCD)(BCD) và (DEF)(DEF). Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Chỉ ra E∈(ABC);F∈(ABC)E∈(ABC);F∈(ABC). b) Chứng minh I∈(DEF);I∈(BCD)I∈(DEF);I∈(BCD). Lời giải chi tiết a) Ta có: {E∈AB,AB⊂(ABC)⇒E∈(ABC)F∈AC,AC⊂(ABC)⇒F∈(ABC) Theo tính chất 3, đường thẳng EF có hai điểm E,F cùng thuộc mặt phẳng (ABC) nên EF⊂(ABC) b) Ta có: {I∈EF,EF⊂(DEF)⇒I∈(DEF)I∈BC,BC⊂(BCD)⇒I∈(BCD)⇒I là điểm chung của hai mặt phẳng (BCD) và (DEF). HocTot.Nam.Name.Vn
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
|