Bài 1 trang 103 SGK Đại số và Giải tích 11

Chứng minh các dãy số sau là các cấp số nhân

Đề bài

Chứng minh các dãy số (35.2n),(52n),(12)n là các cấp số nhân.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh un+1un là một số không đổi.

Lời giải chi tiết

+) Ta có: un=35.2nu1=35.21=65

Với mọi nN, ta có:

un+1=35.2n+1 un+1un=35.2n+135.2n =2n+12n=2n.22n=2 (không đổi)

Vậy dãy số đã cho là một cấp số nhân với u1=65q=2.

+) Ta có: un=52nu1=521=52

Với mọi nN, ta có:

un+1un=52n+152n=52n+1:52n =52n+1.2n5=2n2n+1=2n2n.2=12 (không đổi)

Vậy dãy số đã cho là một cấp số nhân với u1=52  và q=12

+) Ta có: un=(12)nu1=(12)1=12

Với mọi nN, ta có:

un+1un=(12)n+1(12)n=(12)n.(12)(12)n=12 (không đổi)

Vậy dãy số đã cho là cấp số nhân với u1=12q=12.

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

close