Trắc nghiệm Bài 3. Thực hành tính sai số trong phép đo. Ghi kết quả đo - Vật Lí 10 Kết nối tri thứcĐề bài
Câu 1 :
Sử dụng dụng cụ đo để đọc kết quả là:
Câu 2 :
Có bao nhiêu phép đo?
Câu 3 :
Có bao nhiêu loại sai số?
Câu 4 :
Sai số hệ thống thường có nguyên nhân do đâu mà ra?
Câu 5 :
Để khắc phục sai số ngẫu nhiên, ta thường làm gì?
Câu 6 :
Để xác định thời gian đi của bạn A trong quãng đường 100m, người ta sử dụng đồng hồ bấm giây, ta có bảng số liệu dưới đây:
Coi tốc độ đi không đổi trong suốt quá trình chuyển động, sai số trong phép đo này là bao nhiêu?
Câu 7 :
Cho kết quả của phép đo là: \(v = 3,41 \pm 0,12(m/s)\). Sai số tỉ đối của phép đo là:
Lời giải và đáp án
Câu 1 :
Sử dụng dụng cụ đo để đọc kết quả là:
Đáp án : A Phương pháp giải :
Vận dụng kiến thức đã học Lời giải chi tiết :
Có hai loại phép đo: + Phép đo trực tiếp: đo trực tiếp một đại lượng bằng dụng cụ đo, kết quả đo được đọc trực tiếp trên dụng cụ đo + Phép đo gián tiếp: đo một đại lượng không trực tiếp mà thông qua công thức liên hệ với các đại lượng có thể đo trực tiếp
Câu 2 :
Có bao nhiêu phép đo?
Đáp án : B Phương pháp giải :
Vận dụng kiến thức đã học Lời giải chi tiết :
Có hai loại phép đo: + Phép đo trực tiếp: đo trực tiếp một đại lượng bằng dụng cụ đo, kết qua đo được đọc trực tiếp trên dụng cụ đo + Phép đo gián tiếp: đo một đại lượng không trực tiếp mà thông qua công thức liên hệ với các đại lượng có thể đo trực tiếp
Câu 3 :
Có bao nhiêu loại sai số?
Đáp án : B Lời giải chi tiết :
Có 2 loại sai số: + Sai số hệ thống + Sai số ngẫu nhiên
Câu 4 :
Sai số hệ thống thường có nguyên nhân do đâu mà ra?
Đáp án : D Phương pháp giải :
Vận dụng lí thuyết trong sách giáo khoa Vật lí 10 trang 17 Lời giải chi tiết :
Sai số hệ thống có nguyên nhân: + Khách quan (do dụng cụ) + Chủ quan (do người đo)
Câu 5 :
Để khắc phục sai số ngẫu nhiên, ta thường làm gì?
Đáp án : B Phương pháp giải :
Vận dụng lí thuyết trong sách giáo khoa Vật lí trang 17 Lời giải chi tiết :
+ Khi lặp lại phép đo, ta nhận được các giá trị khác nhau, sự sai lệch này không có nguyên nhân rõ ràng nên gọi là sai số ngẫu nhiên. + Để khắc phục người ta thường tiến hành thí nghiệm nhiều lần và tính sai số.
Câu 6 :
Để xác định thời gian đi của bạn A trong quãng đường 100m, người ta sử dụng đồng hồ bấm giây, ta có bảng số liệu dưới đây:
Coi tốc độ đi không đổi trong suốt quá trình chuyển động, sai số trong phép đo này là bao nhiêu?
Đáp án : D Phương pháp giải :
Cách xác định sai số ngẫu nhiên tuyệt đối: + Bước 1: Tính giá trị trung bình của phép đo:\(\overline A = \frac{{{A_1} + {A_2} + ... + {A_n}}}{n}\) + Bước 2: Tính sai số trong từng lần đo: \(\Delta {A_1} = \left| {\overline A - {A_1}} \right|;\Delta {A_2} = \left| {\overline A - {A_2}} \right|;...;\Delta {A_n} = \left| {\overline A - {A_n}} \right|\) + Bước 3: Tính sai số tuyệt đối trung bình của n lần đo: \(\overline {\Delta A} = \frac{{\Delta {A_1} + \Delta {A_2} + ... + \Delta {A_n}}}{n}\) Lời giải chi tiết :
+ Thời gian trung bình của phép đo là: \(\overline t = \frac{{{t_1} + {t_2} + {t_3}}}{3} = \frac{{35,20 + 36,15 + 35,75}}{3} = 35,70(s)\) + Sai số trong từng lần đo: \(\begin{array}{l}\Delta {t_1} = \left| {\overline t - {t_1}} \right| = \left| {35,70 - 35,20} \right| = 0,50(s)\\\Delta {t_2} = \left| {\overline t - {t_2}} \right| = \left| {35,70 - 36,15} \right| = 0,45(s)\\\Delta {t_3} = \left| {\overline t - {t_3}} \right| = \left| {35,70 - 35,75} \right| = 0,05(s)\end{array}\) + Sai số tuyệt đối trung bình: \(\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2} + \Delta {t_3}}}{3} = \frac{{0,50 + 0,45 + 0,05}}{3} \approx 0,33(s)\)
Câu 7 :
Cho kết quả của phép đo là: \(v = 3,41 \pm 0,12(m/s)\). Sai số tỉ đối của phép đo là:
Đáp án : B Phương pháp giải :
Biểu thức tính sai số tỉ đối của phép đo là: \(\delta A = \frac{{\Delta A}}{{\overline A }}.100\% \) Lời giải chi tiết :
Sai số tỉ đối của phép đo là: \(\delta v = \frac{{\Delta v}}{{\overline v }}.100\% = \frac{{0,12}}{{3,41}}.100\% \approx 3,52\% \)
|