Trả lời câu hỏi 2 Bài 2 trang 70 SGK Toán 8 Tập 1Hình thang ABCD có đáy AB, CD. Video hướng dẫn giải Hình thang ABCD có đáy AB,CD. LG a. Cho biết AD//BC (h.16). Chứng minh rằng AD=BC,AB=CD. Phương pháp giải: Áp dụng: - Xét hai tam giác bằng nhau - Hai đường thẳng song song thì có cặp góc so le trong bằng nhau. Lời giải chi tiết: Hình thang ABCD có đáy AB,CD⇒AB//CD⇒^A2=^C1 (hai góc so le trong) Lại có: AD//BC ⇒^A1=^C2 (hai góc so le trong) Xét ΔABC và ΔCDA có: +) ^A2=^C1 (chứng minh trên) +) AC chung +) ^A1=^C2 (chứng minh trên) ⇒ΔABC=ΔCDA (g.c.g) ⇒AD=BC,AB=CD (các cặp cạnh tương ứng) LG b. Cho biết AB=CD (h.17). Chứng minh rằng AD//BC,AD=BC. Phương pháp giải: Áp dụng: - Xét hai tam giác bằng nhau - Hai đường thẳng song song nếu có cặp góc so le trong bằng nhau. Lời giải chi tiết: Hình thang ABCD có đáy AB,CD⇒AB//CD⇒^A2=^C1 (hai góc so le trong) Xét ΔABC và ΔCDA có: +) AC chung +) ^A2=^C1 (chứng minh trên) +) AB=CD (giả thiết) ⇒ΔABC=ΔCDA (c.g.c) ⇒AD=BC (hai cạnh tương ứng) ^A1=^C2 (hai góc tương ứng) Mặt khác ^A1;^C2 ở vị trí so le trong. ⇒AD//BC ( Dấu hiệu nhận biết 2 đường thẳng song song)
|