Lý thuyết Giới hạn của dãy số - SGK Toán 11 Cùng khám phá

I. Giới hạn hữu hạn của dãy số

I. Giới hạn hữu hạn của dãy số

1. Dãy số có giới hạn bằng 0

- Dãy số \(\left( {{u_n}} \right)\)có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.

 Kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 0\) hay \({u_n} \to 0\) khi  \(n \to  + \infty \) hay \(\lim {u_n} = 0\).

* Chú ý:

+ \(\lim \frac{1}{{{n^k}}} = 0,k \in \mathbb{Z}.\)

+ Nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)

2. Dãy số có giới hạn hữu hạn

Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to  + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) hay \({u_n} \to a\)khi  \(n \to  + \infty \).

* Chú ý:  Nếu \({u_n} = c\) (c là hằng số) thì \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = c\)

3. Định lí về giới hạn hữu hạn

Cho \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to  + \infty } {v_n} = b\) và c là hằng số thì

  • \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n} \pm {v_n}) = a \pm b\)
  • \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) = a.b\)
  • \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) = \frac{a}{b}\left( {b \ne 0} \right)\)
  • Nếu \({u_n} \ge 0\) thì với mọi n và \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) thì \(a \ge 0\) và \(\mathop {\lim }\limits_{n \to  + \infty } \sqrt {{u_n}}  = \sqrt a \)

4. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là:

\(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\)

II. Giới hạn vô cực

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \)khi \(n \to  + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \) hay \({u_n} \to  + \infty \) khi \(n \to  + \infty \).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \)khi \(n \to  + \infty \) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - {u_n}} \right) =  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  - \infty \) hay \({u_n} \to  - \infty \) khi \(n \to  + \infty \).

*Nhận xét:

\(\begin{array}{l}a,\lim {n^k} =  + \infty ,k \in \mathbb{N},k \ge 1.\\b,\lim {q^n} =  + \infty ;q \in \mathbb{R},q > 1.\end{array}\)

* Chú ý:

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a\)và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} =  + \infty \)(hoặc\(\mathop {\lim }\limits_{x \to  + \infty } {v_n} =  - \infty \))thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) = 0\).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = 0,{v_n} > 0\)thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) =  + \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = 0,{v_n} < 0\)thì \(\mathop {\lim }\limits_{n \to  + \infty } (\frac{{{u_n}}}{{{v_n}}}) =  - \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = a > 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \)thì \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) =  + \infty \).

Nếu \(\mathop {\lim }\limits_{x \to  + \infty } {v_n} = a < 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \)thì \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n}.{v_n}) =  - \infty \)

 

 

 

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close