Giải mục 4 trang 30,31,32 SGK Toán 12 tập 1 - Chân trời sáng tạoKhảo sát hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}(a \ne 0,m \ne 0\), đa thức tử không chia hết cho đa thức mẫu) Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Lựa chọn câu để xem lời giải nhanh hơn
TH3 Trả lời câu hỏi Thực hành 3 trang 32 SGK Toán 12 Chân trời sáng tạo Khảo sát và vẽ đồ thị của các hàm số sau: a) \(y = x - \frac{1}{x}\) b) \(y = - x + 2 - \frac{1}{{x + 1}}\) c) \(y = \frac{{ - {x^2} - x + 2}}{{x + 1}}\) Phương pháp giải: Bước 1. Tìm tập xác định của hàm số Bước 2. Xét sự biến thiên của hàm số − Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số. − Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có). − Lập bảng biến thiên của hàm số. Bước 3. Vẽ đồ thị của hàm số − Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ − Vẽ các đường tiệm cận của đồ thị hàm số (nếu có). − Vẽ đồ thị hàm số. Lời giải chi tiết: a) \(y = x - \frac{1}{x}\) Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)
\(y' = 1 + \frac{1}{{{x^2}}} \ge 0\forall x \in D\) nên hàm số đồng biến trên D
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } (x - \frac{1}{x}) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } (x - \frac{1}{x}) = - \infty \) \(a = \mathop {\lim }\limits_{x \to + \infty } (1 - \frac{1}{{{x^2}}}) = 1;b = \mathop {\lim }\limits_{x \to + \infty } (x - \frac{1}{x} - x) = 0\) nên y = x là tiệm cận xiên của đồ thị hàm số \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} (x - \frac{1}{x}) = - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} (x - \frac{1}{x}) = + \infty \) nên x = 0 là tiệm cận đứng của đồ thị hàm số
Ta có: \(y = 0 \Leftrightarrow x - \frac{1}{x} = 0 \Leftrightarrow x = 1\) Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0) b) \(y = - x + 2 - \frac{1}{{x + 1}}\) Tập xác định: \(D = \mathbb{R}\backslash \{ - 1\} \)
\(y' = - 1 + \frac{1}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 0\end{array} \right.\) Trên các khoảng (\( - \infty \); -2), (0; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-2; -1) và (-1; 0) thì y' > 0 nên hàm số đồng biến trên khoảng đó.
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } ( - x + 2 - \frac{1}{{x + 1}}) = - \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } ( - x + 2 - \frac{1}{{x + 1}}) = + \infty \) \(a = \mathop {\lim }\limits_{x \to + \infty } ( - 1 + \frac{2}{x} - \frac{1}{{{x^2} + x}}) = - 1;b = \mathop {\lim }\limits_{x \to + \infty } ( - x + 2 - \frac{1}{{x + 1}} + x) = 2\) nên y = -x + 2 là tiệm cận xiên của đồ thị hàm số \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} ( - x + 2 - \frac{1}{{x + 1}}) = - \infty ;\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} ( - x + 2 - \frac{1}{{x + 1}}) = + \infty \) nên x = -1 là tiệm cận đứng của đồ thị hàm số
Khi x = 0 thì y = 1 nên (0;1) là giao điểm của y với trục Oy Ta có: \(y = 0 \Leftrightarrow - x + 2 - \frac{1}{{x + 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 - \sqrt 5 }}{2}\\x = \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\) Vậy đồ thị của hàm số giao với trục Ox tại điểm (\(\frac{{1 - \sqrt 5 }}{2}\); 0) và (\(\frac{{1 + \sqrt 5 }}{2}\);0)
|